Advancement in Green Synthesis of Titanium Dioxide : Photocatalytic and Larvicidal Activities – A review
DOI:
https://doi.org/10.33394/hjkk.v12i1.10655Keywords:
titanium dioxide nanoparticles, photocatalysis, larvicidal activity, plants, green synthesisAbstract
Nanotechnology is a fast expanding field with several applications in science, engineering, healthcare, pharmaceutical, and other areas. Nanoparticles (NP) are frequently produced through a variety of physical and chemical methods. Recently, green synthesis technologies that are more simple, sustainable, and cost-effective have been developed. The environmentally friendly/sustainable synthesis of titanium dioxide nanoparticles (TiO2 NPs) has been in great demand in the previous quarter. Bioactive components found in organisms, such as plants, facilitate the processes of bio-reduction and restriction. This review described green synthesis of TiO2 NPs, the photocatalytical uses, and managing the larvicidal activity of disease-spreading mosquitoes. Various natural reducing agents including proteins, enzymes, phytochemicals, and others, are involved in the synthesis of TiO2 NPs. Current research findings and future concerns in a viable platform based on biologically meditated TiO2 nanostructures for industrial applications.
References
A. Muthuvel, Nejla Mahjoub Said, M. Jothibas, K. G. & V. M. (2021). Microwave-assisted green synthesis of nanoscaled titanium oxide: photocatalyst, antibacterial and antioxidant properties. Journal of Materials Science: Materials in Electronics, 32.
Abdul Jalill, R. D., Nuaman, R. S., & Abd, A. N. (2016). Biological synthesis of Titanium Dioxide nanoparticles by Curcuma longa plant extract and study its biological properties. Wsn, 49(2), 204–222.
Abutaha, N., Al-mekhlafi, F. A., Wadaan, M. A., & Al-Khalifa, M. S. (2022). Larvicidal activity and chemical compositions of Aloe ferox mill, and Commipora abyssinica (O.Berg) combination against the mosquito vectors Culex pipiens L. Journal of King Saud University - Science, 34(4), 101962.
Achudhan, D., Vijayakumar, S., Malaikozhundan, B., Divya, M., Jothirajan, M., Subbian, K., González-Sánchez, Z. I., Mahboob, S., Al-Ghanim, K. A., & Vaseeharan, B. (2020). The antibacterial, antibiofilm, antifogging and mosquitocidal activities of titanium dioxide (TiO2) nanoparticles green-synthesized using multiple plants extracts. Journal of Environmental Chemical Engineering, 8(6).
Akinola, P. O., Lateef, A., Asafa, T. B., Beukes, L. S., Hakeem, A. S., & Irshad, H. M. (2020). Multifunctional titanium dioxide nanoparticles biofabricated via phytosynthetic route using extracts of Cola nitida: antimicrobial, dye degradation, antioxidant and anticoagulant activities. Heliyon, 6(8), e04610.
Amutha, V., Deepak, P., Kamaraj, C., Balasubramani, G., Aiswarya, D., Arul, D., Santhanam, P., Ballamurugan, A. M., & Perumal, P. (2019). Mosquito-Larvicidal Potential of Metal and Oxide nanoparticles Synthesized from Aqueous Extract of the Seagrass, Cymodocea serrulata. Journal of Cluster Science, 7.
Aswini, R., Murugesan, S., & Kannan, K. (2021). Bio-engineered TiO2 nanoparticles using Ledebouria revoluta extract: Larvicidal, histopathological, antibacterial and anticancer activity. International Journal of Environmental Analytical Chemistry, 101(15), 2926–2936.
Balaraman, P., Balasubramanian, B., & Liu, W. (2022). Sargassum myriocystum- mediated TiO 2 -nanoparticles and their antimicrobial , larvicidal activities and enhanced photocatalytic degradation of various dyes. 204(September 2021).
Castillo-HenrÃquez, L., Alfaro-Aguilar, K., Ugalde-álvarez, J., Vega-Fernández, L., de Oca-Vásquez, G. M., & Vega-Baudrit, J. R. (2020). Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials, 10(9), 1–24.
Helmy, E. T., Abouellef, E. M., Soliman, U. A., & Pan, J. H. (2021). Novel green synthesis of S-doped TiO2 nanoparticles using Malva parviflora plant extract and their photocatalytic, antimicrobial and antioxidant activities under sunlight illumination. Chemosphere, 271, 129524. https://doi.org/10.1016/j.chemosphere.2020.129524
Ilyas, M., Waris, A., Khan, A. U., Zamel, D., Yar, L., Baset, A., Muhaymin, A., Khan, S., Ali, A., & Ahmad, A. (2021). Biological synthesis of titanium dioxide nanoparticles from plants and microorganisms and their potential biomedical applications. Inorganic Chemistry Communications, 133(October), 108968.
Kandregula, G., Rao, K. V., & Chidurala, S. (2015). Synthesis of TiO2 Nanoparticles from Orange Fruit Waste from Orange Fruit Waste Centre for Nano Science and Technology , Institute of Science and Technology Introduction : Nanoscience & technology have the ability to see and to control. International Journal Of Multidisciplinary Advanced Research Trends, II(February), 82–90.
Madadi, Z., & Lotfabad, T. B. (2016). Aqueous Extract of Acanthophyllum Laxiusculum Roots as a Renewable Resource for Green Synthesis of Nano-sized Titanium Dioxide Using the Sol-gel method P A P E R I N F O. Advanced Ceramics Progress, 2(1), 26–31.
Marimuthu, S., Rahuman, A. A., Jayaseelan, C., Kirthi, A. V., Santhoshkumar, T., Velayutham, K., Bagavan, A., Kamaraj, C., Elango, G., Iyappan, M., Siva, C., Karthik, L., & Rao, K. V. B. (2013). Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pacific Journal of Tropical Medicine, 6(9), 682–688.
Mathivanan, D., Kamaraj, C., Suseem, S. R., Gandhi, P. R., & Malafaia, G. (2023). Seaweed Sargassum wightii mediated preparation of TiO2 nanoparticles, larvicidal activity against malaria and filariasis vectors, and its effect on non-target organisms. Environmental Research, 225(January), 115569. https://doi.org/10.1016/j.envres.2023.115569
Mayegowda, S. B., Sarma, G., Gadilingappa, M. N., Alghamdi, S., Aslam, A., Refaat, B., Almehmadi, M., & Allahyani, M. (2023). Green - synthesized nanoparticles and their therapeutic applications : A review.
N. Shimpi, S. Mishra, S. S. (2020). Efficient Green Synthesis of TiO2 Nanoparticles Using Murrayakoenigii Leaf Extract. Materials Science.
Narayanan, M., Devi, P. G., Natarajan, D., Kandasamy, S., Devarayan, K., Alsehli, M., Elfasakhany, A., & Pugazhendhi, A. (2021). Green synthesis and characterization of titanium dioxide nanoparticles using leaf extract of Pouteria campechiana and larvicidal and pupicidal activity on Aedes aegypti. Environmental Research, 200(May), 111333.
Narayanan, M., Vigneshwari, P., Natarajan, D., Kandasamy, S., Alsehli, M., Elfasakhany, A., & Pugazhendhi, A. (2021). Synthesis and characterization of TiO2 NPs by aqueous leaf extract of Coleus aromaticus and assess their antibacterial, larvicidal, and anticancer potential. Environmental Research, 200(May), 111335.
Nithya, A., Rokesh, K., & Jothivenkatachalam, K. (2013). Biosynthesis , Characterization and Application of Titanium Dioxide Nanoparticles. Nano Vision, 3(3), 169–174.
Olana, M. H., Sabir, F. K., Bekele, E. T., & Gonfa, B. A. (2022). Citrus sinensis and Musa acuminata Peel Waste Extract Mediated Synthesis of TiO2/rGO Nanocomposites for Photocatalytic Degradation of Methylene Blue under Visible Light Irradiation. Bioinorganic Chemistry and Applications, 2022. https://doi.org/10.1155/2022/5978707
Prashanth, V. (n.d.). Synthesis of TiO2 Using Calotropis gigantea for Visible Light Excitation and Degradation of Congo Red Dye. Journal of Hazardous, Toxic, and Radioactive Waste, 25(4).
Pushpamalini, T., Keerthana, M., Sangavi, R., Nagaraj, A., & Kamaraj, P. (2020). Comparative analysis of green synthesis of TiO2 nanoparticles using four different leaf extract. Materials Today: Proceedings, 40, S180–S184.
Rajakumar, G., Rahuman, A. A., Jayaseelan, C., Santhoshkumar, T., Marimuthu, S., Kamaraj, C., Bagavan, A., Zahir, A. A., Kirthi, A. V., Elango, G., Arora, P., Karthikeyan, R., Manikandan, S., & Jose, S. (2014). Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus. Parasitology Research, 113(2), 469–479.
Rajakumar, G., Rahuman, A. A., Priyamvada, B., Khanna, V. G., Kumar, D. K., & Sujin, P. J. (2012). Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Materials Letters, 68, 115–117.
Rajakumar, G., Rahuman, A. A., Roopan, S. M., Chung, I. M., Anbarasan, K., & Karthikeyan, V. (2015). Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites. Parasitology Research, 114(2), 571–581. https://doi.org/10.1007/s00436-014-4219-8
Rajakumar, G., Rahuman, A. A., Roopan, S. M., Khanna, V. G., Elango, G., Kamaraj, C., Zahir, A. A., & Velayutham, K. (2012). Fungus-mediated biosynthesis and characterization of TiO 2 nanoparticles and their activity against pathogenic bacteria. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 91, 23–29.
Rajendhiran, R., Deivasigamani, V., Palanisamy, J., Masan, S., & Pitchaiya, S. (2021). Terminalia catappa and carissa carandas assisted synthesis of Tio2 nanoparticles - A green synthesis approach. Materials Today: Proceedings, 45, 2232–2238.
Rani, M., & Shanker, U. (2020). Green synthesis of TiO2 and its photocatalytic activity. In Handbook of Smart Photocatalytic Materials: Fundamentals, Fabrications and Water Resources Applications. https://doi.org/10.1016/B978-0-12-819051-7.00002-6
Roopan, S. M., Bharathi, A., Prabhakarn, A., Abdul Rahuman, A., Velayutham, K., Rajakumar, G., Padmaja, R. D., Lekshmi, M., & Madhumitha, G. (2012). Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 98, 86–90.
Sankar, R., Rizwana, K., Shivashangari, K. S., & Ravikumar, V. (2015). Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles. Applied Nanoscience (Switzerland), 5(6), 731–736.
Santhoshkumar, T., Rahuman, A. A., Jayaseelan, C., Rajakumar, G., Marimuthu, S., Kirthi, A. V., Velayutham, K., Thomas, J., Venkatesan, J., & Kim, S. K. (2014). Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pacific Journal of Tropical Medicine, 7(12), 968–976.
Sethy, N. K., Arif, Z., Mishra, P. K., & Kumar, P. (2020). Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Processing and Synthesis, 9(1), 171–181.
Sett, A., Gadewar, M., Sharma, P., Deka, M., & Bora, U. (2016). Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(2), 1–7. https://doi.org/10.1088/2043-6262/7/2/025005
Shyam-Sundar, N., Karthi, S., Senthil-Nathan, S., Narayanan, K. R., Santoshkumar, B., Sivanesh, H., Chanthini, K. M. P., Stanley-Raja, V., Ramasubramanian, R., Abdel-Megeed, A., & Malafaia, G. (2023). Eco-friendly biosynthesis of TiO2 nanoparticles using Desmostachya bipinnata extract: Larvicidal and pupicidal potential against Aedes aegypti and Spodoptera litura and acute toxicity in non-target organisms. Science of the Total Environment, 858(August 2022), 159512.
Soni, N., & Dhiman, R. C. (2020). Larvicidal and antibacterial activity of aqueous leaf extract of Peepal (Ficus religiosa) synthesized nanoparticles. Parasite Epidemiology and Control, 11, e00166. https://doi.org/10.1016/j.parepi.2020.e00166
Suman, T. Y., Ravindranath, R. R. S., Elumalai, D., Kaleena, P. K., Ramkumar, R., Perumal, P., Aranganathan, L., & Chitrarasu, P. S. (2015). Larvicidal activity of titanium dioxide nanoparticles synthesized using Morinda citrifolia root extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus and its other effect on non-target fish. Asian Pacific Journal of Tropical Disease, 5(3), 224–230.
Sun, Y., Wang, S., & Zheng, J. (2019). Biosynthesis of TiO 2 nanoparticles and their application for treatment of brain injury-An in-vitro toxicity study towards central nervous system. Journal of Photochemistry and Photobiology B: Biology, 194(1277), 1–5. https://doi.org/10.1016/j.jphotobiol.2019.02.008
Sundrarajan, M., & Gowri, S. (2011). Green synthesis of titanium dioxide nanoparticles by nyctanthes arbor-tristis leaves extract. Chalcogenide Letters, 8(8), 447–451.
Sunny, N. E., Mathew, S. S., Chandel, N., Saravanan, P., Rajeshkannan, R., Rajasimman, M., Vasseghian, Y., Rajamohan, N., & Kumar, S. V. (2022). Green synthesis of titanium dioxide nanoparticles using plant biomass and their applications- A review. Chemosphere, 300(April), 134612. https://doi.org/10.1016/j.chemosphere.2022.134612
Syahin Firdaus Aziz Zamri, M., & Sapawe, N. (2019). Effect of pH on Phenol Degradation Using Green Synthesized Titanium Dioxide Nanoparticles. Materials Today: Proceedings, 19, 1321–1326. https://doi.org/10.1016/j.matpr.2019.11.144
Technology, C. (2016). Green Synthesis of TiO2 Nanoparticles Using Aloe Vera Extract. 2(January 2015), 28–34.
Thandapani, K., Kathiravan, M., Namasivayam, E., Padiksan, I. A., Natesan, G., Tiwari, M., Giovanni, B., & Perumal, V. (2018). Enhanced larvicidal, antibacterial, and photocatalytic efficacy of TiO2 nanohybrids green synthesized using the aqueous leaf extract of Parthenium hysterophorus. Environmental Science and Pollution Research, 25(11), 10328–10339. https://doi.org/10.1007/s11356-017-9177-0
ur Rehman, K., Zaman, U., Tahir, K., Khan, D., Khattak, N. S., Khan, S. U., Khan, W. U., Nazir, S., Bibi, R., & Gul, R. (2022). A Coronopus didymus based eco-benign synthesis of Titanium dioxide nanoparticles (TiO2 NPs) with enhanced photocatalytic and biomedical applications. Inorganic Chemistry Communications, 137(December 2021), 109179.
Velayutham, K., Rahuman, A. A., Rajakumar, G., Santhoshkumar, T., Marimuthu, S., Jayaseelan, C., Bagavan, A., Kirthi, A. V., Kamaraj, C., Zahir, A. A., & Elango, G. (2012). Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitology Research, 111(6), 2329–2337.
Verma, V., Al-Dossari, M., Singh, J., Rawat, M., Kordy, M. G. M., & Shaban, M. (2022). A Review on Green Synthesis of TiO2 NPs: Synthesis and Applications in Photocatalysis and Antimicrobial. Polymers, 14(7).
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
License and Publishing Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and publishing agreement.
Copyright
Authors who publish with Hydrogen: Jurnal Kependidikan Kimia agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.Â
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Licensing for Data Publication
Hydrogen: Jurnal Kependidikan Kimia uses a variety of waivers and licenses, that are specifically designed for and appropriate for the treatment of data: Open Data Commons Attribution License, http://www.opendatacommons.org/licenses/by/1.0/ (default) Other data publishing licenses may be allowed as exceptions (subject to approval by the editor on a case-by-case basis) and should be justified with a written statement from the author, which will be published with the article.