Review of Secondary Metabolites From Melandean Bark Extract (Bridellia Micrantha): Bioactive Potential and Applications in Health
DOI:
https://doi.org/10.33394/hjkk.v12i3.11956Keywords:
Secondary Metabolite Compounds, Bridellia MicranthaAbstract
Abstract
The emergence of various diseases affecting the immune system, such as COVID-19 and Hand, Foot, and Mouth Disease, demands serious attention. Current climate changes occurring in almost all parts of the world can lead to the emergence of various viruses and bacteria that cause multiple diseases. Exploring medicinal plants that can enhance the immune system is crucial to be continued. This study aims to identify secondary metabolite compounds contained in Bridellia Micrantha plants using chemical reagents and gas chromatography-mass spectrometry (GC-MS) instruments. This research is an experimental laboratory study. The variable studied is the content of secondary metabolite compounds. Data were collected using chemical reagents and instruments. The obtained data are described in informative tables and graphs. Based on the identification results using instruments, positive results were found for organic compound groups such as flavonoids, alkaloids, and tannins. GC-MS test results showed that the organic compounds  contained in Bridellia Micrantha extract are 43.05% hexadecanoic acid, 21.46% oleic acid, 16% docos-13-enoic acid, 3.89% octadecanal, 1.85% propanediol, and 0.91% trans-phytol. Literature reviews indicate that the organic acids in Bridellia micrantha extract have clinical activities as antioxidants and anti-inflammatory agents, while organic compounds containing hydroxyl groups have clinical activities as anti-cancer agents. Based on these findings, Bridellia micrantha extract has the potential as a medicine that can enhance the body's immunity.
Â
Â
References
Adika, O. A., Madubunyi, I. I., & Asuzu, I. U. (2012). Antidiabetic and antioxidant effects of the methanol extract of Bridelia micrantha (Hochst) Baill. (Euphorbiaceae) leaves on alloxan-induced diabetic albino mice. Comparative Clinical Pathology, 21(5), 945–951. https://doi.org/10.1007/s00580-011-1205-8
Agie novilda, C., Tutik, T., & Marcellia, S. (2022). ANALISIS SENYAWA METABOLIT SEKUNDER MENGUNAKAN GC-MS EKSTRAK METANOL KULIT BAWANG MERAH (Allium cepa L.) DENGAN METODE REFLUKS DAN PERKOLASI. Jurnal Sains Dan Teknologi Farmasi Indonesia, 11(2), 100. https://doi.org/10.58327/jstfi.v11i2.199
Akula, R., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11), 1720–1731. https://doi.org/10.4161/psb.6.11.17613
Apt. Belinda Arbitya Dewi, M. F., M.Farm, T. S. W. S. F., & Apt. Nurul Nurhayati, S., M. F. (2022). FITOKIMIA.
Ashraf, M. A., Iqbal, M., Rasheed, R., Hussain, I., Riaz, M., & Arif, M. S. (2018). Chapter 8 - Environmental Stress and Secondary Metabolites in Plants: An Overview. In P. Ahmad, M. A. Ahanger, V. P. Singh, D. K. Tripathi, P. Alam, & M. N. Alyemeni (Eds.), Plant Metabolites and Regulation Under Environmental Stress (pp. 153–167). Academic Press. https://doi.org/10.1016/B978-0-12-812689-9.00008-X
Asumang, P., Boakye, Y. D., Agana, T. A., Yakubu, J., Entsie, P., Akanwariwiak, W. G., Adu, F., & Agyare, C. (2021). Antimicrobial, antioxidant and wound healing activities of methanol leaf extract of Bridelia micrantha (Hochst.) Baill. Scientific African, 14, e00980. https://doi.org/10.1016/j.sciaf.2021.e00980
Balasaheb Nimse, S., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986–28006. https://doi.org/10.1039/C4RA13315C
Banu, K. S., & Dr.L.Cathrine. (2015). General Techniques Involved in Phytochemical Analysis. International Journal of Advanced Research in Chemical Science, 2(4), 25–32.
Bayani, F., Kurniasari, B. A., Hamdani, A. S., Yuliana, D., Wahyuni, I., & Mujaddid, J. (2023). Identification of Secondary Metabolite Compounds from Melandean (Bridelian micrantha) Leaf Extract. Hydrogen: Jurnal Kependidikan Kimia, 11(6), 858–873. https://doi.org/10.33394/hjkk.v11i6.9879
Bharath, B., Perinbam, K., Devanesan, S., AlSalhi, M. S., & Saravanan, M. (2021). Evaluation of the anticancer potential of Hexadecanoic acid from brown algae Turbinaria ornata on HT–29 colon cancer cells. Journal of Molecular Structure, 1235, 130229. https://doi.org/10.1016/j.molstruc.2021.130229
Cardarelli, M., Rouphael, Y., Pellizzoni, M., Colla, G., & Lucini, L. (2017). Profile of bioactive secondary metabolites and antioxidant capacity of leaf exudates from eighteen Aloe species. Industrial Crops and Products, 108, 44–51. https://doi.org/10.1016/j.indcrop.2017.06.017
Carrillo Pérez, C., Cavia Camarero, M. del M., & Alonso de la Torre, S. (2012). Role of oleic acid in immune system; mechanism of action; a review. https://doi.org/10.3305/nh.2012.27.4.5783
Charlet, R., Le Danvic, C., Sendid, B., Nagnan-Le Meillour, P., & Jawhara, S. (2022). Oleic Acid and Palmitic Acid from Bacteroides thetaiotaomicron and Lactobacillus johnsonii Exhibit Anti-Inflammatory and Antifungal Properties. Microorganisms, 10(9), Article 9. https://doi.org/10.3390/microorganisms10091803
Egbuna, C., Ifemeje, J. C., Maduako, M. C., Tijjani, H., Udedi, S. C., Nwaka, A. C., & Ifemeje, M. O. (2018). Phytochemical Test Methods: Qualitative, Quantitative and Proximate Analysis. In Phytochemistry. Apple Academic Press.
Gaafar, A. A., Ali, S. I., El-Shawadfy, M. A., Salama, Z. A., Sękara, A., Ulrichs, C., & Abdelhamid, M. T. (2020). Ascorbic Acid Induces the Increase of Secondary Metabolites, Antioxidant Activity, Growth, and Productivity of the Common Bean under Water Stress Conditions. Plants, 9(5), Article 5. https://doi.org/10.3390/plants9050627
Ganesan, T., Subban, M., Christopher Leslee, D. B., Kuppannan, S. B., & Seedevi, P. (2022). Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03576-w
Gęgotek, A., & Skrzydlewska, E. (2022). Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants, 11(10), Article 10. https://doi.org/10.3390/antiox11101993
Guerriero, G., Berni, R., Muñoz-Sanchez, J. A., Apone, F., Abdel-Salam, E. M., Qahtan, A. A., Alatar, A. A., Cantini, C., Cai, G., Hausman, J.-F., Siddiqui, K. S., Hernández-Sotomayor, S. M. T., & Faisal, M. (2018). Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists. Genes, 9(6), Article 6. https://doi.org/10.3390/genes9060309
Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3), 651–715. https://doi.org/10.1007/s00204-020-02689-3
Hashim, N., Shaari, A. R., Mamat, A. S., & Ahmad, S. (2016). Effect of Differences Methanol Concentration and Extraction Time on the Antioxidant Capacity, Phenolics Content and Bioactive Constituents of Orthosiphon Stamineus Extracts. MATEC Web of Conferences, 78, 01004. https://doi.org/10.1051/matecconf/20167801004
Herschlag, D., & Pinney, M. M. (2018). Hydrogen Bonds: Simple after All? Biochemistry, 57(24), 3338–3352. https://doi.org/10.1021/acs.biochem.8b00217
Huang, W., Wang, Y., Tian, W., Cui, X., Tu, P., Li, J., Shi, S., & Liu, X. (2022). Biosynthesis Investigations of Terpenoid, Alkaloid, and Flavonoid Antimicrobial Agents Derived from Medicinal Plants. Antibiotics, 11(10), Article 10. https://doi.org/10.3390/antibiotics11101380
Irfan, A., Imran, M., Khalid, M., Sami Ullah, M., Khalid, N., Assiri, M. A., Thomas, R., Muthu, S., Raza Basra, M. A., Hussein, M., Al-Sehemi, A. G., & Shahzad, M. (2021). Phenolic and flavonoid contents in Malva sylvestris and exploration of active drugs as antioxidant and anti-COVID19 by quantum chemical and molecular docking studies. Journal of Saudi Chemical Society, 25(8), 101277. https://doi.org/10.1016/j.jscs.2021.101277
Kandar, C. C. (2022). Chapter 14—Herbal flavonoids in healthcare. In S. C. Mandal, A. K. Nayak, & A. K. Dhara (Eds.), Herbal Biomolecules in Healthcare Applications (pp. 295–311). Academic Press. https://doi.org/10.1016/B978-0-323-85852-6.00019-6
Kevin, T. D. A., Cedric, Y., Nadia, N. A. C., Sidiki, N. N. A., Azizi, M. A., Guy-Armand, G. N., Sandra, T. N. J., Christian, M. N., Géraldine, E. S. E., Roméo, T.-T., Payne, V. K., & Gustave, L. L. (2023). Antiplasmodial, Antioxidant, and Cytotoxic Activity of Bridelia micrantha a Cameroonian Medicinal Plant Used for the Treatment of Malaria. BioMed Research International, 2023, e1219432. https://doi.org/10.1155/2023/1219432
Khare, S., Singh, N. B., Singh, A., Hussain, I., Niharika, K., Yadav, V., Bano, C., Yadav, R. K., & Amist, N. (2020). Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. Journal of Plant Biology, 63(3), 203–216. https://doi.org/10.1007/s12374-020-09245-7
Korczowska-ÅÄ…cka, I., SÅ‚owikowski, B., Piekut, T., HurÅ‚a, M., Banaszek, N., Szymanowicz, O., JagodziÅ„ski, P. P., Kozubski, W., Permoda-Pachuta, A., & Dorszewska, J. (2023). Disorders of Endogenous and Exogenous Antioxidants in Neurological Diseases. Antioxidants, 12(10), Article 10. https://doi.org/10.3390/antiox12101811
Kumar, M., Prakash, S., Radha, Kumari, N., Pundir, A., Punia, S., Saurabh, V., Choudhary, P., Changan, S., Dhumal, S., Pradhan, P. C., Alajil, O., Singh, S., Sharma, N., Ilakiya, T., Singh, S., & Mekhemar, M. (2021). Beneficial Role of Antioxidant Secondary Metabolites from Medicinal Plants in Maintaining Oral Health. Antioxidants, 10(7), Article 7. https://doi.org/10.3390/antiox10071061
Leicach, S. R., & Chludil, H. D. (2014). Chapter 9 - Plant Secondary Metabolites: Structure–Activity Relationships in Human Health Prevention and Treatment of Common Diseases. In Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry (Vol. 42, pp. 267–304). Elsevier. https://doi.org/10.1016/B978-0-444-63281-4.00009-4
Li, Y., Kong, D., Fu, Y., Sussman, M. R., & Wu, H. (2020). The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry, 148, 80–89. https://doi.org/10.1016/j.plaphy.2020.01.006
Mandal, S. C., Nayak, A. K., & Dhara, A. K. (2021). Herbal Biomolecules in Healthcare Applications. Academic Press.
Mattosinhos, P. da S., Sarandy, M. M., Novaes, R. D., Esposito, D., & Gonçalves, R. V. (2022). Anti-Inflammatory, Antioxidant, and Skin Regenerative Potential of Secondary Metabolites from Plants of the Brassicaceae Family: A Systematic Review of In Vitro and In Vivo Preclinical Evidence (Biological Activities Brassicaceae Skin Diseases). Antioxidants, 11(7), Article 7. https://doi.org/10.3390/antiox11071346
Mborbe, N., Abdoulahi, M. I. I., Abel, M., Habibou, H. H., & Yaya, M. (2023). Phytochemical screening, phenolic determination and antibacterial activity of the extracts of Bridelia scleroneura Muell. Arg. (Euphorbiaceae) from Chad. Journal of Pharmacognosy and Phytochemistry, 12(2), 44–47. https://doi.org/10.22271/phyto.2023.v12.i2a.14629
Mburu, C., Kareru, P., Kipyegon, C., Madivoli, E., Maina, E., Kairigo, P., Kimani, P., & Marikah, D. (2016). Phytochemical Screening of Crude Extracts of Bridelia micrantha. European Journal of Medicinal Plants, 16(1), Article 1. https://doi.org/10.9734/EJMP/2016/26649
Michalak, M. (2022). Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. International Journal of Molecular Sciences, 23(2), Article 2. https://doi.org/10.3390/ijms23020585
Milugo, T. K., Omosa, L. K., Ochanda, J. O., Owuor, B. O., Wamunyokoli, F. A., Oyugi, J. O., & Ochieng, J. W. (2013). Antagonistic effect of alkaloids and saponins on bioactivity in the quinine tree (Rauvolfia caffra sond.): Further evidence to support biotechnology in traditional medicinal plants. BMC Complementary and Alternative Medicine, 13(1), 285. https://doi.org/10.1186/1472-6882-13-285
Mondal, D. S., & Syed, T. R. (2020). Flavonoids: A vital resource in healthcare and medicine (Includes their effective action on COVID-19). Pharmacology & Pharmacy, 8, 91–104. https://doi.org/10.15406/ppij.2020.08.00285
Nortjie, E., Basitere, M., Moyo, D., & Nyamukamba, P. (2022). Extraction Methods, Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles: A Review. Plants, 11(15), Article 15. https://doi.org/10.3390/plants11152011
Okeleye, B. I., Bessong, P. O., & Ndip, R. N. (2011). Preliminary Phytochemical Screening and In Vitro Anti-Helicobacter pylori Activity of Extracts of the Stem Bark of Bridelia micrantha (Hochst., Baill., Euphorbiaceae). Molecules, 16(8), Article 8. https://doi.org/10.3390/molecules16086193
Olivoto, T., Nardino, M., Carvalho, I. R., Follmann, D. N., Szareski, V. J., Ferrari, M., Pelegrin, A. J. de, & Souza, V. Q. de. (2017). Plant secondary metabolites and its dynamical systems of induction in response to environmental factors: A review. African Journal of Agricultural Research, 12(2), 71–84. https://doi.org/10.5897/AJAR2016.11677
Omeh, Y. N., Onoja, S. O., Ezeja, M. I., & Okwor, P. O. (2014). Subacute antidiabetic and in vivo antioxidant effects of methanolic extract of Bridelia micrantha (Hochst Baill) leaf on alloxan-induced hyperglycaemic rats. Journal of Complementary and Integrative Medicine, 11(2), 99–105. https://doi.org/10.1515/jcim-2013-0067
Pandey, A., & Tripathi, S. (2014). Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. Journal of Pharmacognosy and Phytochemistry, 2(5), 115–119.
Pant, P., Pandey, S., & Dall’Acqua, S. (2021). The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chemistry & Biodiversity, 18(11), e2100345. https://doi.org/10.1002/cbdv.202100345
Pimentel, G. C., & McClellan, A. L. (1971). Hydrogen Bonding. Annual Review of Physical Chemistry, 22(Volume 22,), 347–385. https://doi.org/10.1146/annurev.pc.22.100171.002023
Poiroux-Gonord, F., Bidel, L. P. R., Fanciullino, A.-L., Gautier, H., Lauri-Lopez, F., & Urban, L. (2010). Health Benefits of Vitamins and Secondary Metabolites of Fruits and Vegetables and Prospects To Increase Their Concentrations by Agronomic Approaches. Journal of Agricultural and Food Chemistry, 58(23), 12065–12082. https://doi.org/10.1021/jf1037745
Pravst, I. (2014). Oleic acid and its potential health effects (pp. 35–54).
Qaderi, M. M., Martel, A. B., & Strugnell, C. A. (2023). Environmental Factors Regulate Plant Secondary Metabolites. Plants, 12(3), Article 3. https://doi.org/10.3390/plants12030447
Safriana, S., Andilala, A., Fatimah, C., & Samrani, S. (2021). Profil Fitokimia Simplisia dan Ekstrak Etanol Daun Kedondong Pagar (Lannea coromandelica (Houtt.) Merr.) sebagai Tanaman Obat. Jurnal Ilmu Kefarmasian Indonesia, 19(2), 226. https://doi.org/10.35814/jifi.v19i2.936
Sales-Campos, H., Reis de Souza, P., Crema Peghini, B., Santana da Silva, J., & Ribeiro Cardoso, C. (2013). An Overview of the Modulatory Effects of Oleic Acid in Health and Disease. Mini Reviews in Medicinal Chemistry, 13(2), 201–210. https://doi.org/10.2174/138955713804805193
Santa-MarÃa, C., López-EnrÃquez, S., Montserrat-de la Paz, S., Geniz, I., Reyes-Quiroz, M. E., Moreno, M., Palomares, F., Sobrino, F., & Alba, G. (2023). Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients, 15(1), Article 1. https://doi.org/10.3390/nu15010224
Santamarina, A. B., Pisani, L. P., Baker, E. J., Marat, A. D., Valenzuela, C. A., Miles, E. A., & Calder, P. C. (2021). Anti-inflammatory effects of oleic acid and the anthocyanin keracyanin alone and in combination: Effects on monocyte and macrophage responses and the NF-κB pathway. Food & Function, 12(17), 7909–7922. https://doi.org/10.1039/D1FO01304A
Sen, S., & Chakraborty, R. (2011). The Role of Antioxidants in Human Health. In Oxidative Stress: Diagnostics, Prevention, and Therapy (Vol. 1083, pp. 1–37). American Chemical Society. https://doi.org/10.1021/bk-2011-1083.ch001
Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757–781. https://doi.org/10.1016/j.jff.2015.01.047
Shaikh, J., & Patil, M. (2020). Qualitative tests for preliminary phytochemical screening: An overview. 8, 603–608. https://doi.org/10.22271/chemi.2020.v8.i2i.8834
Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383, 132531. https://doi.org/10.1016/j.foodchem.2022.132531
Sivanandham, V. (2015). PHYTOCHEMICAL TECHNIQUES - A REVIEW. World Journal of Science and Research, 1, 80–91.
Srivastava, A. K., Mishra, P., & Mishra, A. K. (2021). 3 - Effect of climate change on plant secondary metabolism: An ecological perspective. In A. K. Srivastava, V. K. Kannaujiya, R. K. Singh, & D. Singh (Eds.), Evolutionary Diversity as a Source for Anticancer Molecules (pp. 47–76). Academic Press. https://doi.org/10.1016/B978-0-12-821710-8.00003-5
Supruniuk, E., Górski, J., & Chabowski, A. (2023). Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants, 12(2), Article 2. https://doi.org/10.3390/antiox12020501
Tutunchi, H., Saghafi-Asl, M., & Ostadrahimi, A. (2020). A systematic review of the effects of oleoylethanolamide, a high-affinity endogenous ligand of PPAR-α, on the management and prevention of obesity. Clinical and Experimental Pharmacology and Physiology, 47(4), 543–552. https://doi.org/10.1111/1440-1681.13238
Wang, Z., Zhao, Z., Cheng, X., Liu, S., Wei, Q., & Scott, I. M. (2016). Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides. Pesticide Biochemistry and Physiology, 127, 1–7. https://doi.org/10.1016/j.pestbp.2015.09.003
Yang, L., Wen, K.-S., Ruan, X., Zhao, Y.-X., Wei, F., & Wang, Q. (2018). Response of Plant Secondary Metabolites to Environmental Factors. Molecules, 23(4), Article 4. https://doi.org/10.3390/molecules23040762
Yara-Varon, E., Selka, A., Fabiano-Tixier, A.-S., Balcells, M., Canela-Garayoa, R., Bily, A., Touaibia, M., & Chemat, F. (2016). Solvent from forestry biomass. Pinane a stable terpene derived from pine tree byproducts to substitute n-hexane for the extraction of bioactive compounds. Green Chemistry, 18(24), 6596–6608. https://doi.org/10.1039/c6gc02191c
Yin, F. (2023). Lipid metabolism and Alzheimer’s disease: Clinical evidence, mechanistic link and therapeutic promise. The FEBS Journal, 290(6), 1420–1453. https://doi.org/10.1111/febs.16344
Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M. H., & Bahadar, K. (2018). Role of secondary metabolites in plant defense against pathogens. Microbial Pathogenesis, 124, 198–202. https://doi.org/10.1016/j.micpath.2018.08.034
Zhang, W., Chen, Z., Shen, Y., Li, G., Dai, Y., Qi, J., Ma, Y., Yang, S., & Wang, Y. (2020). Molecular Mechanism and Extraction Performance Evaluation for Separation of Methanol and n-Hexane via Ionic Liquids as Extractant. ACS Sustainable Chemistry & Engineering, 8(23), 8700–8712. https://doi.org/10.1021/acssuschemeng.0c02234
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
License and Publishing Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and publishing agreement.
Copyright
Authors who publish with Hydrogen: Jurnal Kependidikan Kimia agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.Â
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Licensing for Data Publication
Hydrogen: Jurnal Kependidikan Kimia uses a variety of waivers and licenses, that are specifically designed for and appropriate for the treatment of data: Open Data Commons Attribution License, http://www.opendatacommons.org/licenses/by/1.0/ (default) Other data publishing licenses may be allowed as exceptions (subject to approval by the editor on a case-by-case basis) and should be justified with a written statement from the author, which will be published with the article.