Effectiveness of Antioxidant Compounds in Swallow's Nest from Lombok
DOI:
https://doi.org/10.33394/hjkk.v12i5.13169Keywords:
antioxidant, sonication, swallow's nestAbstract
This study investigated the antioxidant activity of swallow nests known as Edible Bird Nests (EBNs) derived from the swallow species Collocalia linchi, especially those sourced from Lombok, Indonesia with various health benefits, including their potential as antioxidants. This study used swallow nest samples taken from 3 different locations, namely: East Lombok, Central Lombok and West Lombok. The extraction method used is heating and sonication. Antioxidant activity was assessed quantitatively using the DPPH method and measured by UV-Vis spectrophotometry. Results showed varying IC50 values across different extraction times, with the highest values recorded at 3818.47 mg/mL and the lowest at 2331.47 mg/mL, compared to the control (ascorbic acid) at 35.22 mg/mL. The higher the IC50 value, the lower the effectiveness of antioxidants and vice versa. These findings suggest that the antioxidant activity of EBNs extracts is relatively weak when compared to ascorbic acid. This study contributes to the understanding of optimized extraction techniques by heating and sonication to unlock the full potential of the extraction results of bioactive compounds.
References
An economic nesting ground. (2018, October 10). Nationthailand. https://www.nationthailand.com/perspective/30356222
Bai, W., Liu, X., Fan, Q., Lian, J., & Guo, B. (2023). Study of the antiaging effects of bird’s nest peptide based on biochemical, cellular, and animal models. Journal of Functional Foods, 103, 105479. https://doi.org/10.1016/j.jff.2023.105479
Bikaki, M., Shah, R., Müller, A., & Kuhnert, N. (2021). Heat induced hydrolytic cleavage of the peptide bond in dietary peptides and proteins in food processing. Food Chemistry, 357, 129621. https://doi.org/10.1016/j.foodchem.2021.129621
Celiz, G., Renfige, M., & Finetti, M. (2020). Spectral analysis allows using the DPPH* UV–Vis assay to estimate antioxidant activity of colored compounds. Chemical Papers, 74(9), 3101–3109. https://doi.org/10.1007/s11696-020-01110-8
Cheeseman, J., Kuhnle, G., Spencer, D. I. R., & Osborn, H. M. I. (2021). Assays for the identification and quantification of sialic acids: Challenges, opportunities and future perspectives. Bioorganic & Medicinal Chemistry, 30, 115882. https://doi.org/10.1016/j.bmc.2020.115882
Chok, K. C., Ng, M. G., Ng, K. Y., Koh, R. Y., Tiong, Y. L., & Chye, S. M. (2021). Edible Bird’s Nest: Recent Updates and Industry Insights Based On Laboratory Findings. Frontiers in Pharmacology, 12, 746656. https://doi.org/10.3389/fphar.2021.746656
Choy, K. W., Zain, Z. M., Murugan, D. D., Giribabu, N., Zamakshshari, N. H., Lim, Y. M., & Mustafa, M. R. (2021). Effect of Hydrolyzed Bird’s Nest on β-Cell Function and Insulin Signaling in Type 2 Diabetic Mice. Frontiers in Pharmacology, 12. https://www.frontiersin.org/articles/10.3389/fphar.2021.632169
Chua, L. S., & Zukefli, S. N. (2016). A comprehensive review of edible bird nests and swiftlet farming. Journal of Integrative Medicine, 14(6), 415–428. https://doi.org/10.1016/S2095-4964(16)60282-0
ChuYan, W., LiJun, C., Bing, S., ZhiLing, Y., YanQiu, F., & ShuHuan, L. (2019). Antihypertensive and antioxidant properties of sialic acid, the major component of edible bird’s nests. Current Topics in Nutraceutical Research, 17(4), 376–379.
de Menezes, B. B., Frescura, L. M., Duarte, R., Villetti, M. A., & da Rosa, M. B. (2021). A critical examination of the DPPH method: Mistakes and inconsistencies in stoichiometry and IC50 determination by UV–Vis spectroscopy. Analytica Chimica Acta, 1157, 338398. https://doi.org/10.1016/j.aca.2021.338398
Gan, J. Y., Chang, L. S., Mat Nasir, N. A., Babji, A. S., & Lim, S. J. (2020). Evaluation of physicochemical properties, amino acid profile and bioactivities of edible Bird’s nest hydrolysate as affected by drying methods. LWT, 131, 109777. https://doi.org/10.1016/j.lwt.2020.109777
Garcia-Molina, P., Garcia-Molina, F., Teruel-Puche, J. A., Rodriguez-Lopez, J. N., Garcia-Canovas, F., & Muñoz-Muñoz, J. L. (2022). The Relationship between the IC50 Values and the Apparent Inhibition Constant in the Study of Inhibitors of Tyrosinase Diphenolase Activity Helps Confirm the Mechanism of Inhibition. Molecules, 27(10), 3141. https://doi.org/10.3390/molecules27103141
Haghani, A., Mehrbod, P., Safi, N., Kadir, F. A. A., Omar, A. R., & Ideris, A. (2017). Edible bird’s nest modulate intracellular molecular pathways of influenza A virus infected cells. BMC Complementary and Alternative Medicine, 17(1), 22. https://doi.org/10.1186/s12906-016-1498-x
Harahap, M. A., Sjofjan, O., Radiati, L., Natsir, H., Syahputra, R., & Nurkolis, F. (2023). A current insight and future perspective of edible bird nest as caviar of the east. Pharmacia, 70, 1135–1155. https://doi.org/10.3897/pharmacia.70.e112494
Ito, Y., Matsumoto, K., Usup, A., & Yamamoto, Y. (2021). A sustainable way of agricultural livelihood: Edible bird’s nests in Indonesia. Ecosystem Health and Sustainability, 7(1), 1960200. https://doi.org/10.1080/20964129.2021.1960200
Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412–422. https://doi.org/10.1007/s13197-011-0251-1
Lee, C. H., Lee, T. H., Wong, S. L., Nyakuma, B. B., Hamdan, N., Khoo, S. C., Ramachandran, H., & Jamaluddin, H. (2023). Characteristics and trends in global Edible Bird’s Nest (EBN) research (2002–2021): A review and bibliometric study. Journal of Food Measurement and Characterization, 17(5), 4905–4926. https://doi.org/10.1007/s11694-023-02006-3
Lee, T., Wani, W., Lee, C. H., Cheng, K., Shreaz, S., Syie Luing, W., Hamdan, N., & Azmi, A. (2021). Edible Bird’s Nest: The Functional Values of the Prized Animal-Based Bioproduct From Southeast Asia–A Review. Frontiers in Pharmacology, 12, 626233. https://doi.org/10.3389/fphar.2021.626233
Loh, S.-P., Cheng, S.-H., & Mohamed, W. (2022). Edible Bird’s Nest as a Potential Cognitive Enhancer. Frontiers in Neurology, 13, 865671. https://doi.org/10.3389/fneur.2022.865671
Ma, F., & Liu, D. (2012). Sketch of the edible bird’s nest and its important bioactivities. Food Research International, 48(2), 559–567. https://doi.org/10.1016/j.foodres.2012.06.001
Martinez-Morales, F., Alonso-Castro, A. J., Zapata-Morales, J. R., Carranza-Ãlvarez, C., & Aragon-Martinez, O. H. (2020). Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants. Chemical Papers, 74(10), 3325–3334. https://doi.org/10.1007/s11696-020-01161-x
Munteanu, I. G., & Apetrei, C. (2021). Analytical Methods Used in Determining Antioxidant Activity: A Review. International Journal of Molecular Sciences, 22(7), 3380. https://doi.org/10.3390/ijms22073380
Nasir, N. N. M., Ibrahim, R. M., Bakar, M. Z. A., Mahmud, R., & Razak, N. A. A. (2021). Characterization and Extraction Influence Protein Profiling of Edible Bird’s Nest. Foods, 10(10), 2248. https://doi.org/10.3390/foods10102248
Olszowy-Tomczyk, M. (2021). How to express the antioxidant properties of substances properly? Chemical Papers, 75(12), 6157–6167. https://doi.org/10.1007/s11696-021-01799-1
Prasetyo, E., Kiromah, N. Z. W., & Rahayu, T. P. (2021). Uji Aktivitas Antioksidan Menggunakan Metode DPPH (2,2-difenil-1-pikrilhidrazil) Terhadap Ekstrak Etanol Kulit Buah Durian (Durio zibethinnus L.) dari Desa Alasmalang Kabupaten Banyumas. Jurnal Pharmascience, 8(1), Article 1. https://doi.org/10.20527/jps.v8i1.9200
Ranjha, M., Irfan, S., Lorenzo, J. M., Shafique, B., Kanwal, R., Pateiro, M., Arshad, R., Wang, L., Nayik, G., & Qazalbash, U. (2021). Sonication, a Potential Technique for Extraction of Phytoconstituents: A Systematic Review. Processes, 9, 1406. https://doi.org/10.3390/pr9081406
Shen, L., Pang, S., Zhong, M., Sun, Y., Qayum, A., Liu, Y., Rashid, A., Xu, B., Liang, Q., Ma, H., & Ren, X. (2023). A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrasonics Sonochemistry, 101, 106646. https://doi.org/10.1016/j.ultsonch.2023.106646
Thorburn, C. (2014). The Edible Birds’ Nest Boom in Indonesia and South-east Asia: A Nested Political Ecology. Food, Culture and Society: An International Journal of MultidisciplinaryResearch, 17. https://doi.org/10.2752/175174414X14006746101439
Wang, C.-Y., Cheng, L.-J., Shen, B., Yuan, Z.-L., Feng, Y.-Q., & Lu, S. (2019). Antihypertensive and Antioxidant Properties of Sialic Acid, the Major Component of Edible Bird’s Nests. Current Topics in Nutraceutical Research, 17(4), 376–380.
Wong, R. S. Y. (2013). Edible bird’s nest: Food or medicine? Chinese Journal of Integrative Medicine, 19(9), 643–649. https://doi.org/10.1007/s11655-013-1563-y
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
License and Publishing Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and publishing agreement.
Copyright
Authors who publish with Hydrogen: Jurnal Kependidikan Kimia agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.Â
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Licensing for Data Publication
Hydrogen: Jurnal Kependidikan Kimia uses a variety of waivers and licenses, that are specifically designed for and appropriate for the treatment of data: Open Data Commons Attribution License, http://www.opendatacommons.org/licenses/by/1.0/ (default) Other data publishing licenses may be allowed as exceptions (subject to approval by the editor on a case-by-case basis) and should be justified with a written statement from the author, which will be published with the article.