The Electrical Behaviour Study on Saltwater Batteries in Various Electrolyte Concentrations and Cross-Sectional Areas

Authors

  • Zuffa Anisa Universitas Bojonegoro, Indonesia
  • Lailatul Mubarokah Chemistry Department, Faculty of Science and Engineering, Universitas Bojonegoro, Jl. Lettu Suyitno, Kalirejo, Bojonegoro, Indonesia
  • Meilisa Rusdiana SE Chemistry Department, Faculty of Science and Engineering, Universitas Bojonegoro, Jl. Lettu Suyitno, Kalirejo, Bojonegoro, Indonesia, Indonesia
  • Dyah Setyaningrum Chemistry Department, Faculty of Science and Engineering, Universitas Bojonegoro, Jl. Lettu Suyitno, Kalirejo, Bojonegoro, Indonesia, Indonesia

DOI:

https://doi.org/10.33394/hjkk.v13i2.14591

Keywords:

NaCl, Cu-Al, Galvanic / Voltaic Cell, Saltwater Battery

Abstract

A study has been conducted to analyze the effect of various electrolyte concentrations and cross-sectional areas on voltage and current in batteries using the galvanic cell method (voltaic cells). This study aims to determine the electrolyte concentration and electrode cross-sectional area that provide optimal effects on voltage, current, and power in batteries. Variations in NaCl electrolyte concentration of 1 M; 3 M; 5 M; 7 M; and 9 M as electrolytes and variations in the cross-sectional area of Cu-Al 5 cm2, 10 cm2, 15 cm2, 20 cm2, 25 cm2 as electrodes. From these tests, the optimal voltage value was obtained at a concentration of 7 M and a cross-sectional area of 25 cm2 with a value of 0.73 V, the optimal current value at a concentration of 7 M and a cross-sectional area of 25 cm2 with a value of 19.99 mA, and the optimal power value at a concentration of 7 M and a cross-sectional area of 25 cm2 with a value of 14.593 mwatts. The larger the cross-sectional area of the electrode, the greater the electrical energy produced. The optimum concentration of electrolyte greatly influences the value of the electrical power produced.

Author Biography

Zuffa Anisa, Universitas Bojonegoro

Chemistry

References

Ali, Z. M., Jurado, F., Gandoman, F. H., & Ćalasan, M. (2024). Advancements in battery thermal management for electric vehicles: Types, technologies, and control strategies including deep learning methods. In Ain Shams Engineering Journal (Vol. 15, Issue 9). Ain Shams University. https://doi.org/10.1016/j.asej.2024.102908

Anisa, Z., & Erwanto, E. (2024). Potensi Pembangkit Listrik Tenaga Air Hujan Pltah Sebagai Sumber Energi Listrik Piranti Elektronik Rumah Tangga. Jurnal Rekayasa Mesin, 15(2), 1053–1065. https://doi.org/10.21776/jrm.v15i2.1671

Anisa, Z., & Setyaningrum, D. (2022). Pemanfaatan Elektrolit Air Laut Sebagai Sumber Energi Listrik Baterai Dengan Elektroda Tembaga – Aluminium. Sainmatika: Jurnal Ilmiah Matematika Dan Ilmu Pengetahuan Alam, 156–162. https://doi.org/10.31851/sainmatika.v19i2.9583

Anisa, Z., & Zainuri, M. (2020). Synthesis and Characterization of Lithium Iron Phosphate Carbon Composite (LFP/C) using Magnetite Sand Fe3O4. The Journal of Pure and Applied Chemistry Research, 9(1), 16–22. https://doi.org/10.21776/ub.jpacr.2020.009.01.517

Gopi, C. V. M., & Ramesh, R. (2024). Review of battery-supercapacitor hybrid energy storage systems for electric vehicles. In Results in Engineering (Vol. 24). Elsevier B.V. https://doi.org/10.1016/j.rineng.2024.103598

Guy, J. B., Porcher, W., Chazelle, S., Bossard, F., Mayousse, E., Chavillon, B., & Martinet, S. (2025). Influence of liquid electrolyte salt nature and concentration on tortuosity measurement of battery electrode. Electrochimica Acta, 514. https://doi.org/10.1016/j.electacta.2024.145567

Huang, H., Liu, P., Ma, Q., Tang, Z., Wang, M., & Hu, J. (2022). Enabling a high-performance saltwater Al-air battery via ultrasonically driven electrolyte flow. Ultrasonics Sonochemistry, 88. https://doi.org/10.1016/j.ultsonch.2022.106104

Jacobs, M., Gupta, R., & Paolone, M. (2024). Week-ahead dispatching of active distribution networks using hybrid energy storage systems. Sustainable Energy, Grids and Networks, 39. https://doi.org/10.1016/j.segan.2024.101500

Lippke, M., Ohnimus, T., Frankenberg, F., Schilde, C., & Kwade, A. (2024). Drying and calendering of Lithium Ion battery electrodes: A combined simulation approach. Powder Technology, 444. https://doi.org/10.1016/j.powtec.2024.119984

Liu, K., Ye, X., Zhang, A., Wang, X., Liang, T., Fang, Y., Zhang, W., Hu, K., Liu, X., & Chen, X. (2024). Highly efficient Fe-Cu dual-site nanoparticles supported on black pearls 2000 (carbon black) as oxygen reduction reaction catalysts for Al-air batteries. RSC Advances, 14(8), 5184–5192. https://doi.org/10.1039/d3ra07925b

Pavlovic, J., Tansini, A., Suarez, J., & Fontaras, G. (2024). Influence of vehicle and battery ageing and driving modes on emissions and efficiency in Plug-in hybrid vehicles. Energy Conversion and Management: X, 24. https://doi.org/10.1016/j.ecmx.2024.100776

Singh, R., Choudhary, A., & Arora, N. (2024). Manufacturing Letters Employing the electrode of different diameters to join dissimilar Al-Cu thin sheets using resistance spot welding. In Manufacturing Letters (Vol. 41). www.sciencedirect.com

Waseem, M., Lakshmi, G. S., Ahmad, M., & Suhaib, M. (2025). Energy storage technology and its impact in electric vehicle: Current progress and future outlook. Next Energy, 6, 100202. https://doi.org/10.1016/j.nxener.2024.100202

Yang, J., Cai, Y., & Mi, C. (2022). Lithium-ion battery capacity estimation based on battery surface temperature change under constant-current charge scenario. Energy, 241. https://doi.org/10.1016/j.energy.2021.122879

Zhang, P., Zheng, Y., Wang, H., Wu, J. M., Zhang, Z., & Wen, W. (2024). A battery-supercapacitor hybrid energy storage device that directly uses seawater or saltwater lake water. Materials Today Advances, 24. https://doi.org/10.1016/j.mtadv.2024.100535

Downloads

Published

2025-04-30

How to Cite

Anisa, Z., Mubarokah, L., Rusdiana SE, M., & Setyaningrum, D. (2025). The Electrical Behaviour Study on Saltwater Batteries in Various Electrolyte Concentrations and Cross-Sectional Areas. Hydrogen: Jurnal Kependidikan Kimia, 13(2), 236–242. https://doi.org/10.33394/hjkk.v13i2.14591

Issue

Section

Articles

Citation Check