Design and In silico Study of Amides Containing Heterocyclic Nitrogen as Potent Antituberculosis Agent

Authors

  • First Ambar Wati Universitas Negeri Surabaya, Indonesia, Indonesia
  • Rizqi Nur Afifah Universitas Negeri Surabaya, Indonesia, Indonesia
  • Mohammad Wisnu Wardana Universitas Negeri Surabaya, Indonesia, Indonesia

DOI:

https://doi.org/10.33394/hjkk.v13i4.16895

Keywords:

antituberculosis, carboxamide, InhA receptor, in silico, modified compound

Abstract

Tuberculosis (TB) remains a serious infectious disease caused by Mycobacterium tuberculosis, representing a global health concern, especially owing to the increasing incidence of resistancy, including multidrug-resistant tuberculosis (MDR-TB). Among the potential therapeutic targets for new antituberculosis agents is enoyl-acyl carrier protein (ACP) reductase (InhA), an essential enzyme in the biosynthetic pathway responsible for the formation of vital components of the M. tuberculosis cell wall. This study aims to modify the compound N-(4-fluorobenzyl)pyrazine-2-carboxamide (1) by replacing the pyrazine group with N-(4-fluorobenzyl)-1H-pyrrole-2-carboxamide (4) and N-(4-fluorobenzyl)-1H-indole-2-carboxamide (5), and to evaluate their antituberculosis activity in silico, which has not been reported previously. Molecular docking was performed against the InhA receptor (PDB ID: 4TZK) using AutoDock 4.2.6 software. Method validation was performed using a gridbox with dimensions 30 × 24 × 16 and a grid center at coordinates 10,119; 32,370; 60,728; yielding an RMSD value of 1,16 Å. The docking results indicated that the three modified compounds provided lower binding energies than the control drugs, with compound 5 showing the lowest energy (-8.48 Kcal/mol), followed by compound 4 (-7.44 Kcal/mol) and compound 1 (-7.09 Kcal/mol). Pharmacokinetic predictions indicate that all three compounds comply with Lipinski’s Rule of Five and Veber’s filter, with high gastrointestinal absorption. The study results suggest that modified compound 5 has the strongest potential as an antituberculosis drug candidate and warrants further evaluation in vitro and in vivo.

References

Ahmed Juvale, I. I., Abdul Hamid, A. A., Abd Halim, K. B., & Che Has, A. T. (2022). P-glycoprotein: New Insights Into Structure, Physiological Function, Regulation and Alterations In Disease. Heliyon, 8(6), e09777. https://doi.org/10.1016/j.heliyon.2022.e09777

Angelova, V. T., Pencheva, T., Vassilev, N., K-Yovkova, E., Mihaylova, R., Petrov, B., & Valcheva, V. (2022). Development of New Antimycobacterial Sulfonyl Hydrazones and 4-Methyl-1,2,3-thiadiazole-Based Hydrazone Derivatives. Antibiotics, 11(5), 562. https://doi.org/10.3390/antibiotics11050562

Arwansyah, A., Ambarsari, L., & Sumaryada, T. I. (2014). Simulasi Docking Senyawa Kurkumin dan Analognya Sebagai Inhibitor Reseptor Androgen pada Kanker Prostat. Current Biochemistry, 1(1), Article 1. https://doi.org/10.29244/cb.11.1.2

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717

Daneman, R., & Prat, A. (2015). The Blood–Brain Barrier. Cold Spring Harbor Perspectives in Biology, 7(1), a020412. https://doi.org/10.1101/cshperspect.a020412

Franz, N. D., Belardinelli, J. M., Kaminski, M. A., Dunn, L. C., de Moura, V. C. N., Blaha, M. A., Truong, D. D., Li, W., Jackson, M., & North, E. J. (2017). Design, Synthesis and Evaluation of Indole-2-carboxamides with Pan Anti-mycobacterial Activity. Bioorganic & Medicinal Chemistry, 25(14), 3746–3755. https://doi.org/10.1016/j.bmc.2017.05.015

Gholam, G. M. (2022). Molecular Docking of The Bioactive Compound Ocimum Sanctum as an Inhibitor of Sap 1 Candida albicans. Sasambo Journal of Pharmacy, 3(1), 18–24. https://doi.org/10.29303/sjp.v3i1.157

Gilani, B., & Cassagnol, M. (2023). Biochemistry, Cytochrome P450. In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK557698/

Joseph, S. K., Sabitha, M., & Nair, S. C. (2019). Stimuli-Responsive Polymeric Nanosystem for Colon Specific Drug Delivery. Advanced Pharmaceutical Bulletin, 10(1), 1–12. https://doi.org/10.15171/apb.2020.001

K, R., Kakkassery, J. T., Raphael, V. P., Johnson, R., & K, V. T. (2021). In Vitro Antibacterial and In Silico Docking Studies of Two Schiff Bases on Staphylococcus aureus and Its Target Proteins. Future Journal of Pharmaceutical Sciences, 7(1), 78–86. https://doi.org/10.1186/s43094-021-00225-3

Khalifa, A., Khalil, A., Abdel-Aziz, M. M., Albohy, A., & Mohamady, S. (2023). Isatin-Pyrimidine Hybrid Derivatives as Enoyl Acyl Carrier Protein Reductase (InhA) Inhibitors Against Mycobacterium tuberculosis. Bioorganic Chemistry, 138, 106591. https://doi.org/10.1016/j.bioorg.2023.106591

Kralj, S., JukiÄ, M., & Bren, U. (2023). Molecular Filters in Medicinal Chemistry. Encyclopedia, 3(2), 501–511. https://doi.org/10.3390/encyclopedia3020035

Manjunatha, U. H., Rao, S. P. S., Kondreddi, R. R., Noble, C. G., Camacho, L. R., Tan, B. H., Ng, S. H., Ng, P. S., Ma, N. L., Lakshminarayana, S. B., Herve, M., Barnes, S. W., Yu, W., Kuhen, K., Blasco, F., Beer, D., Walker, J. R., Tonge, P. J., Glynne, R., … Diagana, T. T. (2015). Direct Inhibitors of InhA Active Against Mycobacterium tuberculosis. Science Translational Medicine, 7(269), 269ra3. https://doi.org/10.1126/scitranslmed.3010597

Maximo Da Silva, M., Comin, M., Santos Duarte, T., Foglio, M., De Carvalho, J., Do Carmo Vieira, M., & Nazari Formagio, A. (2015). Synthesis, Antiproliferative Activity and Molecular Properties Predictions of Galloyl Derivatives. Molecules, 20(4), 5360–5373. https://doi.org/10.3390/molecules20045360

Millan-Casarrubias, E. J., García-Tejeda, Y. V., González-De La Rosa, C. H., Ruiz-Mazón, L., Hernández-Rodríguez, Y. M., & Cigarroa-Mayorga, O. E. (2025). Molecular Docking and Pharmacological In Silico Evaluation of Camptothecin and Related Ligands as Promising HER2-Targeted Therapies for Breast Cancer. Current Issues in Molecular Biology, 47(3), 193. https://doi.org/10.3390/cimb47030193

Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

Prasad, M. S., Bhole, R. P., Khedekar, P. B., & Chikhale, R. V. (2021). Mycobacterium Enoyl Acyl Carrier Protein Reductase (InhA): A Key Target for Antitubercular Drug Discovery. Bioorganic Chemistry, 115, 105242. https://doi.org/10.1016/j.bioorg.2021.105242

Shifeng, P., Boopathi, V., Murugesan, M., Mathiyalagan, R., Ahn, J., Xiaolin, C., Yang, D.-U., Kwak, G.-Y., Kong, B. M., Yang, D.-C., Kang, S. C., & Hao, Z. (2022). Molecular Docking and Dynamics Simulation Studies of Ginsenosides with SARS-CoV-2 Host and Viral Entry Protein Targets. Natural Product Communications, 17(11), 1934578X221134331. https://doi.org/10.1177/1934578X221134331

Sururi, A. M., Rahayu, D. A., Rohma, M. K., Faizah, M., Vebianawati, E. A., & Savita, M. (2023). GC–MS and ADME Profile Analysis of Carcinoscorpius rotundicauda Bioactive Compounds and Their Potential as COVID-19 Antiviral. Future Journal of Pharmaceutical Sciences, 9(1), 115. https://doi.org/10.1186/s43094-023-00563-4

Sururi, A. M., Tukiran, T., Aisa, E. R., & Raihan, M. (2024). Identification of Bioactive Compounds and ADMET Profile of Stem Bark of Syzygium samarangense and Their Potential as Antibreast Cancer and Antiinflammatory. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2024.143017

Wati, F. A., Adyarini, P. U., Fatmawati, S., & Santoso, M. (2020). Synthesis of Pyrazinamide Analogues and Their Antitubercular Bioactivity. Medicinal Chemistry Research, 29(12), 2157–2163. https://doi.org/10.1007/s00044-020-02626-0

WHO. (2023). WHO | Global tuberculosis report 2023. <https://www.who.int/tb/publications/global_report/en/>

Wotale, T. W., Lelisho, M. E., Negasa, B. W., Tareke, S. A., Gobena, W. E., & Amesa, E. G. (2024). Identifying Risk Factors for Recurrent Multidrug Resistant Tuberculosis Based on Patient’s Record Data from 2016 to 2021: Retrospective Study. Scientific Reports, 14(1), 23912. https://doi.org/10.1038/s41598-024-73209-x

Wu, K., Kwon, S. H., Zhou, X., Fuller, C., Wang, X., Vadgama, J., & Wu, Y. (2024). Overcoming Challenges in Small-Molecule Drug Bioavailability: A Review of Key Factors and Approaches. International Journal of Molecular Sciences, 25(23), 13121. https://doi.org/10.3390/ijms252313121

Yu, J., Zhou, Z., Tay-Sontheimer, J., Levy, R. H., & Ragueneau-Majlessi, I. (2017). Intestinal Drug Interactions Mediated by OATPs: A Systematic Review of Preclinical and Clinical Findings. Journal of Pharmaceutical Sciences, 106(9), 2312–2325. https://doi.org/10.1016/j.xphs.2017.04.004

Yu, T., Sudhakar, N., & Okafor, C. D. (2024). Illuminating Ligand-Induced Dynamics In Nuclear Receptors Through MD Simulations. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1867(2), 195025. https://doi.org/10.1016/j.bbagrm.2024.195025

Zhao, H., Gao, Y., Li, W., Sheng, L., Cui, K., Wang, B., Fu, L., Gao, M., Lin, Z., Zou, X., Jackson, M., Huang, H., Lu, Y., & Zhang, D. (2022). Design, Synthesis, and Biological Evaluation of Pyrrole-2-carboxamide Derivatives as Mycobacterial Membrane Protein Large 3 Inhibitors for Treating Drug-Resistant Tuberculosis. Journal of Medicinal Chemistry, 65(15), 10534–10553. https://doi.org/10.1021/acs.jmedchem.2c00718

Zulqurnain, M., Aijijiyah, N. P., Wati, F. A., Fadlan, A., Azminah, A., & Santoso, M. (2023). Synthesis, Mycobacterium tuberculosis H37Rv Inhibitory Activity, and Molecular Docking Study of Pyrazinamide Analogs. Journal of Applied Pharmaceutical Science, 13,(11), 170–177. https://doi.org/10.7324/JAPS.2023.140149

Zulqurnain, M., Nurjanah, A., & Wati, F. A. (2024). Studi In Silico Senyawa Hibrid Gabungan Pirazinamida dengan Asam 4-(2-aminotiazol-4-il)benzoat. Jurnal Crystal : Publikasi Penelitian Kimia Dan Terapannya, 6(1), Article 1. https://doi.org/10.36526/jc.v6i1.3299

Zulqurnain, M., Wati, F. A., Nurjanah, A., Kavin, L. A. N., Afifah, R. N., Suyatno, & Santoso, M. (2025). Design, Synthesis, and In Silico Study of Two N-Substituted Pyrazinamide Analogs as Potential Antituberculosis Agents. The Journal of Pure and Applied Chemistry Research, 14(1), 23–33. https://doi.org/10.21776/ub.jpacr.2025.014.01.7939

Published

2025-08-31

How to Cite

Wati, F. A., Afifah, R. N., & Wardana, M. W. (2025). Design and In silico Study of Amides Containing Heterocyclic Nitrogen as Potent Antituberculosis Agent. Hydrogen: Jurnal Kependidikan Kimia, 13(4). https://doi.org/10.33394/hjkk.v13i4.16895

Citation Check