Synergetic Effect of Potassium Iodide and Miana (Coleus scutellaroides (L.) Benth.) Leaves Extract on Mild Steel in HCl Medium
DOI:
https://doi.org/10.33394/hjkk.v11i6.9810Keywords:
mild steel, corrosion inhibition, Miana leaves extract, potassium iodide, synergistic effects, FTIR, SEMAbstract
Due to its low carbon content, mild steel is prone to corrosion. Therefore, corrosion inhibitors are needed to decrease the corrosive rate of mild steel. This research aims to investigate the influence of adding potassium iodide to miana leaves extract (Coleus scutellaroides (L.) Benth.) (MLE) on the corrosion rate of mild steel, identify the type of adsorption, synergistic effects and characterize the surface of mild steel both before and after the addition of potassium iodide. The weight loss method is employed to test the corrosion rate, and the type of adsorption is identified through thermodynamic calculations. Surface characterization is evaluated using Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM). As potassium iodide is added, the weight loss findings show an increase in inhibitory efficiency. When potassium iodide concentration was 0.4 g/L and temperature was 30°C, the maximum inhibitory efficiency was attained, which was 92.784%. Characterization analysis indicates the interaction between potassium iodide and MLE with the surface of mild steel. This research has not been explored yet and is expected to provide information on the use of potassium iodide and MLE as environmentally friendly corrosion inhibitors.
References
Astuti, A. D., Perdana, A. I., Natzir, R., Massi, M. N., Subehan, & Alam, G. (2021). Compound Analysis And Genetic Study Of Selected Plectranthus scutellarioides Varieties From Indonesia. Pharmacognosy Journal, 13(6), 1516–1526. https://doi.org/10.5530/PJ.2021.13.193
Astuti, A. D., Yasir, B., Subehan, & Alam, G. (2019). Comparison Of Two Varieties Of Plectranthus scutellarioides Based On Extraction Method, Phytochemical Compound, And Cytotoxicity. Journal of Physics: Conference Series, 1341(7). https://doi.org/10.1088/1742-6596/1341/7/072012
Benghalia, M. A., Fares, C., Khadraoui, A., Meliani, M. H., Suleiman, R. K., Sorour, A. A., Dmytrakh, I. M., & Azari, Z. (2019). Assessment Of Corrosion Inhibitory Effect Of Ruta chalepensis Flavonoid Extracts On API 5L X52 Steel In 1M HCL Medium. Environmental Engineering and Management Journal, 18(9), 2009–2021. https://doi.org/10.30638/eemj.2019.191
Bhardwaj, N., Sharma, P., & Kumar, V. (2021). Phytochemicals as steel corrosion inhibitor: An insight into mechanism. Corrosion Reviews, 39(1), 27–41. https://doi.org/10.1515/corrrev-2020-0046
Chapagain, A., Acharya, D., Das, A. K., Chhetri, K., Oli, H. B., & Yadav, A. P. (2022). Alkaloid of Rhynchostylis retusa as Green Inhibitor for Mild Steel Corrosion in 1 M H2SO4 Solution. Electrochem, 3(2), 211–224. https://doi.org/10.3390/electrochem3020013
Djellab, M. (2018). Synergistic Effect Of Halide Ions And Gum Arabic For The Corrosion Inhibition Of API5L X70 Pipeline Steel In H2SO4. Materials and Corrosion, July, 1–12. https://doi.org/10.1002/maco.201810203
El-katori, E. E., Fouda, A. S., & Mohamed, R. R. (2020). Synergistic Corrosion Inhibition Activity Of The Chicoriumintybus Extract And Iodide Ions For Mild Steel In Acidic Media. Journal of the Chilean Chemical Society, 65(1), 4672–4681. https://doi.org/10.4067/S0717-97072020000104672
Emembolu, L., & Igwegbe, C. (2022). Investigation of Temperature Correlations on Corrosion Inhibition of Carbon Steel in Acid Media by Flower Extract. European Journal of Engineering and Applied Sciences, 5(1), 29–36. https://doi.org/10.55581/ejeas.1127813
Emriadi, Untari, P., & Efdi, M. (2021). Leave extract of syzygium malaccenseas green inhibitor of mild steel in acidic medium. Rasayan Journal of Chemistry, 14(1), 569–577. https://doi.org/10.31788/RJC.2021.1415836
Emriadi, Yulistia, V., & Aziz, H. (2018). Corrosion Inhibition of Mild Steel in Hidrochloric Acid Solution by Gnetum gnemon . L Peel Extract as Green Inhibitor. Der Pharma Chemica, 10(10), 79–85.
Febriani, A., Umaro, S. A., Nursa’adah, E., & Firdaus, M. L. (2022). Kapasitas Adsorpsi Zat Warna Malachite Green Dan Violet Dye Menggunakan Metal Organic Frameworks (Fe-BDC). Hydrogen : Jurnal Kependidikan Kimia, 10(2), 61–72. http://ojs.undikma.ac.id/index.php/hydrogen/
Indah, D. R., & Safnowandi, S. (2020). Karakterisasi Karbon Baggase Teraktivasi dan Aplikasinya untuk Adsorpsi Logam Tembaga. Hydrogen: Jurnal Kependidikan Kimia, 7(2), 46. https://doi.org/10.33394/hjkk.v7i2.1912
Khadiri, M., Idouhli, R., Bennouna, M. A., Aityoub, A., Abouelfida, A., & Benyaïch, A. (2021). Contribution To Understanding Synergistic Effect Of Punica Granatum Extract And Potassium Iodide As Corrosion Inhibitor Of S355 Steel. Corrosion Reviews, 39(2), 137–148. https://doi.org/10.1515/corrrev-2020-0042
Khadom, A. A., Abd, A. N., & Ahmed, N. A. (2022). Synergistic effect of iodide ions on the corrosion inhibition of mild steel in 1 M HCl by Cardaria Draba leaf extract. Results in Chemistry, 4, 0–6. https://doi.org/10.1016/j.rechem.2022.100668
Khadom, A. A., Abd, A. N., & Arif, N. (2018). Potassium Iodide as a Corrosion Inhibitor of Mild Steel in Hydrochloric Acid: Kinetics and Mathematical Studies. Journal of Bio- and Tribo-Corrosion, October. https://doi.org/10.1007/s40735-018-0133-4
Marzorati, S., Verotta, L., & Trasatti, S. P. (2019). Green Corrosion Inhibitors from Natural Sources and Biomass Wastes : Review. MDPI, 1–24. https://doi.org/10.3390/molecules24010048
Ogunleye, O. O., Arinkoola, A. O., Eletta, O. A., Agbede, O. O., Osho, Y. A., Morakinyo, A. F., & Hamed, J. O. (2020). Green Corrosion Inhibition And Adsorption Characteristics Of Luffa Cylindrica Leaf Extract On Mild Steel In Hydrochloric Acid Environment. Heliyon, 6(1), 1–12. https://doi.org/10.1016/j.heliyon.2020.e03205
Pramudita, M., Sukirno, S., & Nasikin, M. (2019). Synergistic Corrosion Inhibition Effect Of Rice Husk Extract And KI For Mild Steel In H2SO4 Solution. Bulletin of Chemical Reaction Engineering &Amp; Catalysis, 14(3), 697–704. https://doi.org/10.9767/bcrec.14.3.4249.697-704
Priya, V. S., Rani, C. U., & Velrani, S. (2018). Synergistic Effect Of Halide Ions On The Corrosion Inhibition Of Mild Steel In Sulphuric Acid Using Methyl, N-Methyl Ethyl and Ethyl Substituted γ -2,c-6-Diphenyl Piperidin-4-One Semicarbazones. Surface Review and Letters, 25(2), 1–9. https://doi.org/10.1142/S0218625X18500506
Riastuti, R., Setiawidiani, D., Soedarsono, J. W., Aribowo, S., Paul, A., & Kaban, S. (2022). Development Of Saga (Abrus Precatorius ) Seed Extract As A Green Corrosion Inhibitor In API 5L Grade B Under 1M HCl. Eastern-European Journal of Enterprise Technologies, 6, 46–56. https://doi.org/https://doi.org/10.15587/1729-4061.2022.263236
Sait, N., Aliouane, N., Ahmed, N. A., Toukal, L., & Al-, M. (2021). Synergistic Effect Of Potassium Iodide On Corrosion Inhibition Of Copper By Tetraphosphonic Acid In Hydrochloric Acid Solution. Journal of Adhesion Science and Technology, 0(0), 1–25.
Salimi, Y. K. (2021). Daun Miana Sebagai Antioksidan & Antikanker. In Angewandte Chemie International Edition, 6(11), 951–952. IKAPI.
Saraswat, V., & Yadav, M. (2021). Improved corrosion resistant performance of mild steel under acid environment by novel carbon dots as green corrosion inhibitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627(April), 127172. https://doi.org/10.1016/j.colsurfa.2021.127172
Shamnamol, G., Jacob, J. M., & Rugma, P. (2020). Synergistic effect of salts on the corrosion inhibitive action of plant extract : a review. Journal of Adhesion Science and Technology, 0(0), 1–31. https://doi.org/10.1080/01694243.2020.1797336
Stiadi, Y., Rahmayeni, Rahmawati, L., Efdi, M., Aziz, H., & Emriadi. (2020). Mangifera Odorata Griff Seed Extract As Corrosion Inhibitor Of Mild Steel In Hydrochloric Acid Medium. Rasayan Journal of Chemistry, 13(1), 230–239. https://doi.org/10.31788/RJC.2020.1315325
Thakur, A., & Kumar, A. (2021). Sustainable Inhibitors for Corrosion Mitigation in Aggressive Corrosive Media: A Comprehensive Study. In Journal of Bio- and Tribo-Corrosion (Vol. 7, Issue 2). Springer International Publishing. https://doi.org/10.1007/s40735-021-00501-y
Untari, P., Emriadi, Efdi, M., & Azuxetullatif. (2020). Efek Sinergetik Ekstrak Daun Jambu Bol (Syzygium malaccense) dan Iodida terhadap Korosi Baja dalam Larutan Asam. Chempublish Journal, 5(2), 179–193. https://doi.org/10.22437/chp.v5i2.11348
Verma, D. K., Khan, F., & Agrawal, S. (2017). Inhibition Effect of Bombax ceiba Flower Extract as Green Corrosion Inhibitor of Mild Steel in 0.5 M H2SO4 Medium. ASIAN JOURNAL OF CHEMISTRY, 29(12), 2615–2618. https://doi.org/https://doi.org/10.14233/ajchem.2017.20718
Wahyuni, S., Emriadi, & Suryati. (2022). Ekstrak Daun Kecapi Sebagai Inhibitor Korosi Baja Dalam Medium Asam Klorida. Jurnal Katalisator, 7(1), 41–51. https://doi.org/10.22216/jk.v5i2.5717
Wan, S., Chen, H., Zhang, T., Liao, B., & Guo, X. (2021). Anti-Corrosion Mechanism of Parsley Extract and Synergistic Iodide as Novel Corrosion Inhibitors for Carbon Steel-Q235 in Acidic Medium by Electrochemical, XPS and DFT Methods. Frontiers in Bioengineering and Biotechnology, 9(December 2021), 1–15. https://doi.org/10.3389/fbioe.2021.815953
Wijayanti, D. K., Fadly, D., Muharini, R., Rasmawan, R., Education, C., & Program, S. (2023). Inhibition of α -Glucosidase Enzyme by Ethanol Extract of Kratom Leaf Variant ( Mitragyna speciosa Korth.). HYDROGEN: Jurnal Kependidikan Kimia, 11(June).
Zaher, A., Aslam, R., Lee, H. S., Khafouri, A., Boufellous, M., Alrashdi, A. A., El aoufir, Y., Lgaz, H., & Ouhssine, M. (2022). A combined computational & electrochemical exploration of the Ammi visnaga L. extract as a green corrosion inhibitor for carbon steel in HCl solution. Arabian Journal of Chemistry, 15(2), 103573. https://doi.org/10.1016/j.arabjc.2021.103573
Zakeri, A., Bahmani, E., & Aghdam, A. S. R. (2022). Plant extracts as sustainable and green corrosion inhibitors for protection of ferrous metals in corrosive media: A mini review. Corrosion Communications, 5, 25–38. https://doi.org/10.1016/j.corcom.2022.03.002
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
License and Publishing Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and publishing agreement.
Copyright
Authors who publish with Hydrogen: Jurnal Kependidikan Kimia agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.Â
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Licensing for Data Publication
Hydrogen: Jurnal Kependidikan Kimia uses a variety of waivers and licenses, that are specifically designed for and appropriate for the treatment of data: Open Data Commons Attribution License, http://www.opendatacommons.org/licenses/by/1.0/ (default) Other data publishing licenses may be allowed as exceptions (subject to approval by the editor on a case-by-case basis) and should be justified with a written statement from the author, which will be published with the article.