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Abstract 

Indonesia, geographically situated on the Pacific Ring of Fire, has one of the highest potentials for earthquake and 

tsunami disasters worldwide, second only to Japan. These seismic events pose significant threats, including loss 

of life and infrastructure damage. One of the key strategies to mitigate earthquake risks is the implementation of 

Earthquake Early Warning System (EEWS) technology, which heavily relies on the spatial distribution of 

accelerographs. The Indonesian People's Accelerograph (ARI) has been designed as an affordable and 

independently built solution to record ground vibration acceleration, utilizing the MEMS-based ADXL 355 sensor 

and an ESP32 microcontroller for efficient EEWS implementation. This study focuses on the development and 

correction of the ARI system to enhance instrument response accuracy by analyzing ground acceleration vibration 

data through an inversion-based method applied to ARI recordings. The results demonstrated that the ARI 

accelerograph exhibits pole values of 1.31260317e-07 and -2.43562359e-02, zero values of -1.23898531e-06 and 

2.77232055, and a gain of 72.97. These findings confirm that the ARI accelerograph provides reliable seismic 

data, highlighting its potential as an essential tool in reducing earthquake risk and mitigating seismic disaster 

impacts through improved earthquake early warning capabilities. 
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INTRODUCTION 

Earthquakes are natural disasters that cannot be precisely predicted in terms of time and 

location. They can trigger devastating secondary effects such as tsunamis, landslides, 

liquefaction, and infrastructure damage, often resulting in significant casualties. Due to its 

geographical position along the Pacific Ring of Fire, Indonesia experiences high seismic 

activity, making earthquake preparedness and mitigation crucial (Cremen & Galasso, 2020). 

One of the most effective strategies for reducing earthquake risks is the implementation of 

Earthquake Early Warning Systems (EEWS). The effectiveness of EEWS heavily depends on 

the density and distribution of accelerograph networks, which detect seismic activity and 

provide real-time data for warning dissemination (Gunoro et al., 2023; Peng et al., 2019). 

Therefore, expanding the coverage of accelerographs across Indonesia is essential to enhance 

the accuracy and speed of earthquake alerts. 

An accelerograph is a vital component of EEWS, designed to detect and record ground 

acceleration during seismic events. This instrument provides critical data on earthquake 

intensity and ground motion dynamics, which is crucial for issuing timely warnings (Y. Wu & 
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Mittal, 2021). By continuously recording seismic signals and transmitting them to centralized 

servers, accelerographs enable real-time analysis and rapid alert distribution to affected 

regions. The spatial distribution of accelerographs significantly influences the reliability of 

EEWS, reinforcing their role as fundamental elements in minimizing earthquake risks and 

improving public safety (Patanè et al., 2022). 

The Meteorology, Climatology, and Geophysics Agency of Indonesia (BMKG) is 

responsible for monitoring seismic activity and managing the national accelerograph network. 

Currently, Indonesia operates 801 accelerograph stations, consisting of 267 non-collocated and 

534 collocated stations, covering a land area of approximately 1,922,570 km² (BMKG, 2024). 

In contrast, Japan, despite having a significantly smaller landmass, has deployed over 2,000 

accelerographs, ensuring more extensive earthquake monitoring and faster response times 

(Phung et al., 2020). Expanding Indonesia's accelerograph network presents financial and 

logistical challenges, necessitating the development of cost-effective and scalable 

accelerograph systems to facilitate mass deployment. 

Recent advancements in accelerograph technology have focused on improving 

affordability and efficiency while maintaining high sensitivity and reliability. MEMS (Micro-

Electro-Mechanical Systems)-based accelerographs, such as those using the ADXL 355 sensor, 

have emerged as promising solutions for large-scale seismic monitoring (Papanikolaou et al., 

2021; Zhang et al., 2022). The ESP32 microcontroller, integrated with the ADXL 355 sensor, 

offers robust computational capabilities and wireless connectivity, enabling real-time data 

acquisition and transmission to centralized processing servers (Fu et al., 2019). MEMS-based 

accelerographs provide significant advantages over traditional seismometers, including lower 

cost, compact design, and ease of deployment, making them ideal for dense seismic networks 

(Cascone et al., 2021; Chandrakumar et al., 2022). 

Despite their lower cost, MEMS accelerometers have demonstrated performance levels 

suitable for earthquake early warning applications. Advances in sensor technology have 

significantly improved the bias stability and noise characteristics of MEMS devices, narrowing 

the performance gap between MEMS-based accelerometers and conventional force-balanced 

seismometers (Alteriis et al., 2021; A. Wu et al., 2021). Properly calibrated MEMS 

accelerometers can produce high-fidelity seismic data, particularly in urban environments 

where a dense network of sensors is crucial for accurate earthquake detection and hazard 

assessment (Bravo-Haro et al., 2021; Patanè et al., 2022). 

This study focuses on the development of the Indonesian People's Accelerograph (ARI) 

system, designed to enhance earthquake monitoring capabilities through a cost-effective and 

scalable solution. The ARI system integrates the ADXL 355 sensor and ESP32 microcontroller 

to capture ground acceleration data, with an emphasis on optimizing its response 

characteristics. A key aspect of this development is the accurate determination of the system's 

response function through pole-zero analysis, a critical factor in ensuring reliable seismic data 

acquisition (Ma et al., 2023). The pole and zero values of an accelerograph define its dynamic 

response to seismic signals, affecting its ability to capture ground motion across various 

frequency ranges. Precise calibration of these parameters is essential to minimize instrument-

induced distortions and ensure that recorded data accurately represents true ground motion 

(Scafidi et al., 2024). 

To enhance the reliability of ARI, this study employs an inversion-based approach for 

pole-zero correction, utilizing spectral frequency analysis methods such as Fast Fourier 

Transform (FFT). FFT has been widely adopted in seismology for its computational efficiency 

and ability to decompose seismic signals into their frequency components, allowing for 

accurate instrument response modeling (Bilal et al., 2022). Alternative spectral methods, such 

as wavelet transforms and Short-Time Fourier Transform (STFT), have also been explored in 

recent studies, but FFT remains a preferred choice due to its balance between accuracy and 

computational efficiency (Lim et al., 2022; Rodriguez & Myklebust, 2022). 
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Furthermore, the integration of MEMS-based accelerographs into seismic networks is 

gaining global recognition as an effective method for enhancing earthquake preparedness. 

Countries such as China and Japan have successfully implemented large-scale MEMS 

accelerograph networks, supported by government funding and strategic partnerships (Xie et 

al., 2021). In developing regions, financial constraints and infrastructure limitations pose 

significant challenges to seismic network expansion. However, leveraging low-cost MEMS 

accelerometers enables broader deployments without imposing excessive financial burdens, 

making them a viable solution for countries with limited resources (Manglik, 2023). 

Additionally, mobile-based seismic detection systems utilizing smartphone accelerometers 

have emerged as complementary solutions for increasing earthquake monitoring coverage in 

regions with sparse seismic instrumentation (Bossu et al., 2021; Kong et al., 2020). 

By implementing MEMS-based accelerographs such as ARI, Indonesia can 

significantly improve its EEWS, enhancing real-time seismic monitoring and disaster response 

capabilities. The outcomes of this study aim to contribute to the advancement of cost-effective 

seismic monitoring systems, supporting national efforts to mitigate earthquake risks and 

improve public safety in earthquake-prone regions. 

METHOD 

The ARI accelerograph integrates a Micro-Electro-Mechanical System (MEMS) sensor 

and an IoT-based ESP32 microcontroller as the primary data acquisition components. The 

MEMS ADXL 355 sensor combines mechanical and electronic elements, enabling motion 

detection by converting movement into capacitance changes, which are then transformed into 

electrical signals. These electrical signals are processed through an internal Analog-to-Digital 

Converter (ADC) to generate digital signals representing acceleration values along the x, y, 

and z axes (Fu et al., 2019; Prato et al., 2021). The acceleration data from the MEMS ADXL 

355 sensor is subsequently transmitted to the ESP32 microcontroller via an Inter-Integrated 

Circuit (I2C) digital communication interface. The ESP32 microcontroller processes and 

transmits the data via WiFi or a GSM network using an additional GSM module, allowing for 

remote data storage and further analysis on a centralized server. 

 

Figure 1. ARI System Diagram 

The raw ground acceleration data obtained by ARI is inherently influenced by the 

instrument's response, necessitating a correction method to ensure accurate seismic data 

representation. To achieve this, the study employs an inversion-based approach for correcting 

the instrument response, utilizing spectral frequency analysis. 
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Transfer Function Model 

The determination of the instrument response function in this study follows an inversion-

based method that analyzes the frequency spectrum of seismic recordings. This method aims 

to resolve the transfer function equation of the accelerograph system. The ARI accelerograph 

records data in the MiniSEED (MSEED) format, which is subsequently processed using the 

Fast Fourier Transform (FFT) to derive the frequency spectrum. The transfer function is then 

obtained in the s-domain (Laplace Transform) for further analysis (Viswanatha et al., 2020). 

Fast Fourier Transform (FFT) Process 

The FFT is a widely used mathematical algorithm that converts signals from the time 

domain to the frequency domain. It enables spectral analysis of recorded vibrations, facilitating 

an understanding of dominant frequencies and the seismic wave characteristics (Ehirim & 

Akpan, 2017; Munyithya et al., 2020). The FFT process includes data reading, preprocessing, 

application of the FFT, conversion to the frequency domain, and frequency interpretation. 

While FFT is computationally efficient and widely adopted in seismology, it has certain 

limitations when analyzing non-stationary signals. Alternative methods, such as Continuous 

Wavelet Transform (CWT) and Short-Time Fourier Transform (STFT), offer better time-

frequency resolution for transient seismic events (Babić et al., 2018; M. Tang et al., 2023). 

Nevertheless, FFT remains the preferred method in this study due to its balance between 

accuracy and computational efficiency. 

Spectrum Model Fitting 

Model fitting or optimization is performed using the least-squares method through the 

curve_fit function from Scipy. This approach enables the simulation of the system response 

under specific input conditions and mathematical models, which are then compared with the 

original spectral data (Huang et al., 2021; L. Tang et al., 2020). Least-squares fitting minimizes 

the sum of squared errors, improving the precision of instrument response corrections. 

However, it is sensitive to outliers and assumes a linear relationship between observed and 

predicted data, which may introduce inaccuracies in nonlinear systems (Islam et al., 2017; 

Merrill et al., 2024). 

Pole-Zero Determination Techniques 

Determining pole-zero parameters in seismic instruments is crucial for accurate 

calibration and performance optimization. Several techniques have been explored in recent 

research: 

1. Complex Time Delay Analysis: Extracts pole-zero parameters by analyzing seismic 

wave transmission and reflection characteristics, providing insights into instrument 

dynamics (Chen, 2022). 

2. Least 1-Norm Pole-Zero Modeling: An iterative estimation technique that enhances 

seismic signal modeling accuracy, particularly in noisy environments (Shi et al., 2017). 

3. Frequency Response Function Methods: Bode and Nyquist plots assist in visually 

identifying poles and zeros, aiding in stability and transfer function analysis 

(Viswanatha et al., 2020). 

4. Ambient Noise Correlation Techniques: Utilizes cross-correlation of ambient seismic 

noise to validate pole-zero characteristics, improving long-term instrument monitoring 

(Muir & Zhan, 2021). 

5. Computational Algorithms: Techniques such as Padé approximants simplify complex 

pole-zero relationships, reducing computational overhead and enhancing 

interpretability (Han & Kim, 2018). 

Calibration and Performance Optimization 

To ensure accurate data acquisition, MEMS-based accelerographs require rigorous 

calibration. Best practices include: 
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1. Dynamic Characterization: Evaluating linearity and amplitude response across 

frequencies following standards like ISO 16063-21 (Prato et al., 2021; Schiavi et al., 

2023). 

2. Sampling Rate Management: Controlling sampling variability to minimize 

calibration uncertainty (D’Emilia et al., 2021). 

3. Auto-Calibration Mechanisms: Real-time adjustments through embedded self-

calibration techniques (Łuczak et al., 2024). 

4. Environmental Considerations: Addressing temperature fluctuations that impact 

sensor sensitivity (Landi et al., 2023). 

5. Statistical Analysis of Calibration Data: Leveraging statistical models to assess 

calibration sensitivity and reliability (Krokidis et al., 2022). 

Enhancements for Real-Time Seismic Data Processing 

Modern advancements in real-time seismic processing have introduced innovative 

methodologies to optimize low-cost accelerograph systems: 

1. Machine Learning for Noise Reduction: Convolutional Neural Networks (CNNs) and 

Generative Adversarial Networks (GANs) effectively denoise seismic signals, 

improving signal-to-noise ratios (Li et al., 2021; H. Zhao et al., 2023). 

2. Hybrid Analytical Methods: Combining Singular Value Decomposition (SVD) with 

deep learning to refine seismic data processing (Ji & Wang, 2022). 

3. Adaptive Filtering Techniques: Time-frequency domain polarization filtering 

enhances seismic signal clarity (X. Yang et al., 2019). 

By integrating these methodologies, the ARI system aims to provide reliable, high-

quality seismic data while maintaining cost-efficiency. This study advances the development 

of robust, MEMS-based accelerograph networks to improve earthquake monitoring and 

enhance early warning capabilities, particularly in resource-constrained regions. 

RESULTS AND DISCUSSION 

The performance of the ARI accelerograph system was analyzed to evaluate its 

effectiveness in detecting seismic activity. The raw acceleration data recorded by the system 

was corrected using a transfer function model to mitigate instrument response distortions. The 

corrected data was then utilized to compute ground acceleration values along three axes, 

providing a comprehensive understanding of seismic activity (Gunoro et al., 2023; Patanè et 

al., 2022). 

Figures 2 and 3 illustrate the comparison between the raw frequency spectrum and the 

optimized frequency spectrum obtained using the least-squares fitting method. The optimized 

spectrum closely matches the raw data, indicating that the pole-zero correction process 

effectively reduces distortions. The obtained pole values were 1.31260317e-07 and -

2.43562359e-02, while the zero values were -1.23898531e-06 and 2.77232055, with a gain of 

72.97. These parameters are essential for ensuring that the system response aligns with actual 

seismic events, producing accurate and reliable data (Delden et al., 2023; Maslovskyi, 2022). 

The correction process ensures that the recorded signals more accurately reflect real ground 

motion by removing the systematic biases introduced by the instrument itself. 

The pole and zero values derived from this research offer insights into the dynamic 

behavior of the system. The poles define the resonance characteristics of the system, while the 

zeros determine the frequencies where the system exhibits minimal response. The gain 

parameter regulates the overall system response magnitude, improving the accelerograph’s 

accuracy in detecting and recording ground motion (Hooijberg et al., 2017; Lutti et al., 2022). 

These corrections enhance the ability of ARI to capture real-time ground motion data, making 

it an essential tool for seismic hazard assessment and EEWS applications. 
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Figure 2. Power Spectrum Graph 

The correction process validates that the ARI accelerograph system delivers high-quality 

and reliable data, making it a valuable component of an Earthquake Early Warning System 

(EEWS). Utilizing low-cost components such as the ESP32 microcontroller and the MEMS 

ADXL355 sensor, the ARI system presents a cost-effective solution for dense seismic 

monitoring networks. This is particularly advantageous in countries like Indonesia, where 

expanding the number of seismic monitoring stations is critical to improving early warning 

capabilities (Bravo-Haro et al., 2021; Esposito et al., 2024). 

Moreover, integrating FFT with pole-zero analysis provides a powerful methodology for 

seismic signal analysis. FFT transforms data from the time domain to the frequency domain, 

facilitating detailed examination of signal frequency components. This approach ensures that 

accelerograph data is corrected with high accuracy and that the system response is well-

calibrated. The least-squares fitting technique further refines correction accuracy by optimizing 

model parameters, reducing residual errors, and enhancing spectral precision (Pollo et al., 

2018; J. Zhao et al., 2021). The results highlight that MEMS-based accelerographs, when 

properly calibrated, can achieve performance levels comparable to traditional high-end seismic 

instruments. 

Figures 2 and 3 demonstrate the effectiveness of the correction methods applied in this 

study. The power spectrum graph (Figure 2) illustrates the frequency distribution of seismic 

signals before and after correction, while the fitted model (Figure 3) confirms that the least-

squares optimization accurately aligns the processed signal with theoretical expectations. 

These figures substantiate that the implemented correction techniques significantly enhance 

the reliability of the seismic data collected. 

The ARI accelerograph system’s capability to detect and correct ground motion with high 

accuracy is crucial for an efficient EEWS. Early warning systems rely on timely and precise 

detection of seismic activity to issue alerts and mitigate potential damage. Enhancing 

accelerograph accuracy significantly improves the effectiveness of EEWS, leading to better 

preparedness and risk reduction in earthquake-prone regions (Y. Wu & Mittal, 2021; B. M. 

Yang et al., 2021). Additionally, improved ground motion data accuracy supports better 

earthquake modeling and hazard assessments, contributing to improved seismic resilience 

strategies. 
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Figure 3. Original Spectrum and Fitting Results 

This study demonstrates that the ARI accelerograph system is a viable and efficient tool 

for earthquake monitoring and early warning applications. The integration of MEMS 

technology, microcontroller-based data acquisition, and advanced signal processing techniques 

such as FFT and pole-zero correction makes the ARI system a promising solution for 

widespread deployment in Indonesia and other seismically active regions (Hu et al., 2021; Nof 

et al., 2019). 

A comparative analysis between the ARI accelerograph system and existing networks in 

Japan, which operates over 2,000 accelerograph sites, highlights both advantages and 

limitations. While Japan benefits from a larger and more extensive seismic network, the ARI 

accelerograph offers a cost-effective alternative that balances affordability with adequate 

performance. This balance makes it a feasible solution for seismic monitoring in budget-

constrained regions where high-cost deployments are impractical (Hu et al., 2021; Varanis et 

al., 2018). 

The low cost of the ARI system makes it an attractive choice for countries with limited 

financial resources but a high need for seismic monitoring. The ability of the ARI system to 

provide accurate ground acceleration data at an affordable cost ensures that it can be mass-

produced and deployed on a large scale, increasing EEWS coverage and response capabilities 

(Hilborne & Roffey, 2020; Westwood et al., 2019). Furthermore, integrating MEMS-based 

accelerographs with cloud-based processing and machine learning techniques could further 

improve the system's predictive capabilities and real-time data analysis efficiency (Pollo et al., 

2018; J. Zhao et al., 2021). 

Despite its advantages, MEMS accelerographs, including the ARI system, have some 

inherent limitations. MEMS sensors are generally more susceptible to temperature fluctuations, 

electromagnetic interference, and environmental noise, which can affect measurement 

accuracy (Schiavi et al., 2023; Tahir et al., 2021). However, advancements in sensor 

technology, including auto-calibration mechanisms and improved signal processing 

algorithms, continue to narrow the performance gap between MEMS-based and high-end 

accelerographs (Chandrakumar et al., 2022; Patanè et al., 2022). Future research should focus 

on improving sensor robustness against environmental factors and enhancing data fusion 

techniques for integrating MEMS accelerographs with other seismic monitoring instruments. 

The ARI accelerograph system represents a crucial step toward expanding seismic 

monitoring networks in developing regions. By leveraging low-cost technology and advanced 

data processing techniques, this study contributes to improving seismic hazard assessment and 

earthquake early warning systems. Future developments should aim to integrate the ARI 

system with regional and global seismic networks to enhance data accuracy, improve predictive 

capabilities, and support rapid disaster response (Bravo-Haro et al., 2021; B. M. Yang et al., 
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2021). Furthermore, the adoption of artificial intelligence and deep learning approaches for 

real-time signal analysis could enhance the efficiency of low-cost accelerograph systems, 

making them more adaptable to varying seismic conditions(Jia & Ye, 2023; Y. Wu & Mittal, 

2021). 

Figures 2 and 3 confirm that the ARI system effectively captures and processes seismic 

signals, ensuring high-fidelity data collection for earthquake monitoring. This research 

underscores the importance of continued innovation in MEMS accelerograph technology to 

bridge the gap between affordability and performance, ultimately contributing to more resilient 

seismic monitoring and early warning infrastructures worldwide. 

CONCLUSION 

The Indonesian People's Accelerograph (ARI) has been successfully developed, 

integrating the MEMS ADXL 355 sensor and ESP32 microcontroller to detect and correct 

ground acceleration data. The system's performance was evaluated through pole-zero 

correction and frequency spectrum analysis, yielding accurate data suitable for Earthquake 

Early Warning Systems (EEWS). The combination of low-cost components and advanced 

signal processing techniques establishes the ARI accelerograph as a promising solution for 

enhancing seismic monitoring in Indonesia and other earthquake-prone regions. 

The ARI accelerograph system has demonstrated its ability to provide reliable, high-

quality data at an affordable cost. Its scalability for mass production and deployment in dense 

seismic networks enhances early earthquake warning capabilities, thereby improving public 

safety and disaster preparedness. These findings suggest that the ARI system could serve as a 

vital tool in mitigating earthquake risks and minimizing seismic disaster impacts. 

RECOMMENDATIONS 

Future research should focus on expanding the ARI accelerograph network across 

Indonesia to improve national earthquake monitoring coverage. Extensive field testing in 

various geological conditions is necessary to further validate the system's performance and 

adaptability. Additionally, refining calibration methods and enhancing real-time data 

processing capabilities will increase the accuracy and efficiency of the ARI system, ensuring 

its reliability in diverse environments. 

Integrating machine learning algorithms and cloud-based data processing could enhance 

ARI's predictive capabilities and real-time analysis. Moreover, collaboration with international 

seismic monitoring agencies would facilitate knowledge exchange and improve the integration 

of ARI with global earthquake monitoring networks. By addressing these areas, the ARI system 

can contribute significantly to the advancement of seismic hazard assessment and early 

warning strategies on both national and international scales. 
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