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Abstract 

Heart disease is one of the leading causes of mortality in Indonesia, yet early detection remains a challenge due 

to limitations in data and suboptimal classification methods. This study aims to improve the accuracy of heart 

disease prediction by integrating the Naïve Bayes algorithm with Particle Swarm Optimization (PSO) for feature 

selection. A dataset of 303 patient records was processed using RapidMiner across three configurations: Naïve 

Bayes with split validation (80:20), Naïve Bayes with 10-fold cross-validation, and Naïve Bayes with PSO-based 

feature selection. The results showed that incorporating PSO increased accuracy from 87.60% to 89.26%, along 

with improvements in precision and recall, while maintaining a high AUC value (0.933). These findings 

demonstrate that PSO effectively identifies the most relevant features and enhances the performance of heart 

disease prediction models. The study also underscores the importance of validation methods and model 

interpretability in the application of artificial intelligence in healthcare. 
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INTRODUCTION 

Cardiovascular disease (CVD) remains the leading cause of mortality globally, and heart 

disease in particular is a critical public health issue, especially in low- and middle-income 

countries such as Indonesia. According to the 2018 Basic Health Research Report (Riskesdas), 

the national prevalence of coronary heart disease in Indonesia was recorded at 1.5%, with some 

provinces, such as North Kalimantan (2.2%), DI Yogyakarta and Gorontalo (2.0%), and DKI 

Jakarta (1.9%), exhibiting rates significantly above the national average (Muri & 

Muharni.,2025; Gbadamosi et al, 2022; Arumugam et al., 2023). In contrast, East Nusa 

Tenggara had the lowest prevalence, at just 0.7% (Khoiriyah, et al., 2019). These 

epidemiological findings are corroborated by subsequent ecological and burden-of-disease 

analyses, which indicate an alarming rise in non-communicable diseases (NCDs), including 

ischemic heart disease, diabetes, and hypertension conditions that are strongly linked to 

cardiovascular morbidity and mortality in Indonesia  (Sigit et al., 2020; Faulata et al., 2021). 

This trend reflects the growing burden of metabolic syndrome and lifestyle-related risk 

factors, such as poor diet, lack of physical activity, and stress, especially in urban populations. 
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Studies also point to increased incidence of heart failure and myocardial infarction, exacerbated 

by insufficient early screening and diagnosis (Wahyuni et al., 2022; Nuraeni et al., 2021). 

Despite this growing burden, access to early diagnostic services remains uneven across 

Indonesian provinces, with many patients receiving diagnoses only at advanced stages of the 

disease. This is compounded by limited public health outreach and poor health literacy, 

especially concerning early symptoms of cardiovascular disease (Andriyanto, et al, 2025). 

In addressing this gap, the integration of artificial intelligence (AI) in medical diagnostics 

offers promising potential. Among AI techniques, machine learning has emerged as a viable 

tool for early disease prediction and risk assessment. In particular, data mining methods such 

as the Naïve Bayes (NB) algorithm have demonstrated practical utility in healthcare domains 

due to their simplicity, interpretability, and relatively low computational complexity (Gad, 

2022; Berrar, 2025). These methods can effectively utilize structured medical data such as 

clinical symptoms, lab results, and patient histories to provide predictive insights that support 

clinical decision-making. However, the predictive performance of NB and other machine 

learning algorithms is highly dependent on the quality and relevance of input features. In many 

medical datasets, high dimensionality, redundant attributes, and noise can obscure meaningful 

patterns and reduce classification accuracy. Feature selection, therefore, becomes a crucial step 

in building reliable and interpretable predictive models. To this end, Particle Swarm 

Optimization (PSO) has been increasingly recognized as an effective metaheuristic technique 

for optimizing Alzaqebah et al., 2021feature subsets and improving model performance (Wei 

et al., 2019; Alzaqebah et al., 2021). 

PSO mimics the collective behavior of swarms in nature such as bird flocking or fish 

schooling to iteratively search for optimal solutions in a multi-dimensional space. When 

applied to feature selection, PSO enables classifiers like Naïve Bayes to focus only on the most 

relevant input attributes, effectively enhancing classification performance by eliminating 

irrelevant or redundant features (Shalehah et al., 2023). Its adaptability and scalability make 

PSO a compelling tool for medical diagnostics, where high-dimensional and heterogeneous 

data are common. Several studies have demonstrated the utility of PSO in medical data mining. 

For instance, (Gupta et al. 2018; Bajeh et al. 2019) showed that PSO integration with Naïve 

Bayes significantly improved classification accuracy in predicting surgical outcomes. 

Similarly, (Rizki et al., 2024; Septiawan et al., 2022) applied PSO for hyperparameter tuning 

in K-Nearest Neighbors (KNN) and Support Vector Machines (SVMs), respectively, achieving 

robust gains in predictive performance. Importantly, in applications involving clinical datasets, 

such improvements directly translate to better diagnostic accuracy and reduced false positives 

or negatives. 

In the context of heart disease prediction, comparative evaluations highlight PSO’s 

contribution. A study utilizing Naïve Bayes with cross-validation on 303 medical records 

(without feature selection) achieved 82.17% accuracy (Berrar, 2025). Another study employing 

PSO for feature selection with a Naïve Bayes classifier reported a significantly higher accuracy 

of 92.86%, using a similar dataset processed via RapidMiner (Fang, et al, 2023). Other works 

using varying sample sizes and validation strategies (e.g., 5-fold cross-validation or 80:20 split) 

have reported accuracy values ranging from 70% to 90% depending on whether feature 

selection was implemented. (Reddy, et el., 2022). While these studies provide valuable 

insights, many fall short in conducting systematic comparisons across validation strategies or 

in explaining the mechanistic advantages of PSO enhanced feature selection. Specifically, few 

have examined the interaction between feature selection, validation technique (split vs. cross-

validation), and classification accuracy in a structured and reproducible manner. Additionally, 

there remains a lack of discussion on how PSO-selected features contribute to model 

interpretability and clinical relevance, especially in the context of heart disease prediction. 

This research seeks to address those gaps. We propose a methodical evaluation of the 

Naïve Bayes classifier with and without the incorporation of PSO-based feature selection, using 
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both split validation (80:20) and 10-fold cross-validation strategies. Our objective is not only 

to compare performance metrics such as accuracy, precision, recall, and AUC but also to assess 

how PSO improves the model through intelligent feature weighting and dimensionality 

reduction. Furthermore, the study emphasizes reproducibility by detailing PSO’s parameter 

configurations and validation workflows. PSO’s optimization capability, especially in terms of 

convergence speed and solution quality, allows for efficient hyperparameter tuning and feature 

selection even in small-to-moderate datasets. In our context, the heart disease dataset from the 

UCI Machine Learning Repository comprising 303 records and 14 attributes is a standard 

benchmark used in many studies, providing a consistent foundation for comparative analysis. 

Nevertheless, the limited size of this dataset poses generalizability concerns. Hence, we frame 

our findings as exploratory, advocating for future validation on larger, more diverse datasets. 

The integration of PSO into predictive models not only improves performance but also 

enhances the interpretability and reliability of such models, which is crucial in clinical settings. 

As  (Bouaziz et al., 2019 ; Kalatzis et al., 2023) argue, the selection of meaningful features aids 

in building trust among clinicians and facilitates the integration of machine learning outputs 

into decision-support systems. Therefore, by systematically evaluating the effects of PSO on 

Naïve Bayes in the domain of heart disease prediction, this study contributes both technically 

and clinically to the advancement of intelligent diagnostic tools. While prior research has 

demonstrated that the Naïve Bayes algorithm can achieve reasonably high accuracy for heart 

disease prediction, and that PSO-based feature selection can further enhance this performance, 

few studies have methodically benchmarked the combined effect of PSO and validation 

strategies. This study aims to fill that gap by providing a comparative analysis of different 

configurations, thereby offering insights into the practical and methodological implications of 

using PSO in medical classification tasks. 

 

METHOD 

The research will follow a systematic approach to analyze data and uncover patterns, 

aiming to construct a dataset that supports the study's objectives. This process ensures that 

every stage of the research is logically connected and directed toward the intended goals. By 

applying structured methods, the study maintains consistency and clarity from data collection 

to interpretation. Careful planning and analysis will guide the development of a dataset that 

not only reflects the research focus but also enables meaningful insights. Ultimately, this 

structured process is essential to achieving coherence and validity across all phases of the 

research. 

 

Figure 1. Research Stages Flow 
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The processes depicted in Figure 1 above represent the data mining process utilized in 

this research: 

1. The initial study stage is the stage of conducting research. At this stage, researchers conduct 

observations or understand research that includes clear project objectives and requirements 

in terms of business or research units as a whole. They translate objectives and limitations 

into the formulation of data mining problem definitions and prepare initial strategies to 

achieve these objectives. 

2. The data collection phase entails gathering data using exploratory data analysis to gain 

familiarity with the dataset, uncover preliminary insights, and assess data quality[14]. The 

research data used was obtained from the UCI Machine Learning Repository site with the 

name heart-disease. Here is the URL of the dataset. https://archive.ics.uci.edu/ml/machine-

learning-databases/heart-disease/. 

3. Data preparation involves converting unprocessed data into a more intelligible format. This 

technique is essential because to the irregular format of raw data (Prasetyo et el.,  2023). 

a. Data Selection 

During this selection procedure, the data were extracted from the comprehensive UCI 

Machine Learning Repository dataset, specifically pertaining to heart disease 

symptom prediction. From the selection findings, 303 patient records will be utilized 

for data mining analyses. 

b. Data Integration 

This process is carried out because the data structure scheme needs to change from 

raw data to data ready to be further preprocessed with the transformation stage. The 

data will change the scheme or structure that is easy to process. Table data is defined 

extending to the right side with more columns and neatly, and the file type previously 

csv is exported to an Excel data type, making it easy to change the data. 

c. Data Transformation 

The Transformation process is the final stage of data change that is ready to be 

processed and entered into the Rapid Miner tools or applications. All attributes are 14, 

with 1 label attribute (num/output) and 13 feature attributes. There are 303 data points 

of heart disease patients and 14 attributes, including age, sex, cp, treetops, chol, FBS, 

resting, thalach, exang, old peak, slope, ca, thal, and num. The data explanation can 

be seen below. 

2. The mining process employs the Naïve Bayes Algorithm and the Particle Swarm 

Optimization (PSO) technique to enhance accuracy. 

 

Figure 2. PSO Process 



Muharni et al. Optimization of the Naïve Bayes Algorithm ……….. 

 

 Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram, July 2025. Vol. 13, No. 3 | 586 
 

3. Naïve Bayes Algorithm Testing 

The dataset used to evaluate the Naïve Bayes method focuses on predicting heart disease 

symptoms and is obtained from the UCI Machine Learning Repository. It contains relevant 

medical information that supports accurate classification and diagnosis. As a reliable and 

widely recognized data source, it enhances the validity of the research and provides a solid 

foundation for conducting targeted analysis in the context of health condition prediction. 

 

RESULTS AND DISCUSSION 

Results 

This study investigates the effectiveness of combining Particle Swarm Optimization 

(PSO) with the Naïve Bayes classification algorithm for predicting heart disease symptoms. 

The experiment used a dataset of 303 medical records sourced from the UCI Machine Learning 

Repository. The main objective is to assess classification performance across three 

configurations: (1) Naïve Bayes with split validation (80:20), (2) Naïve Bayes with 10-fold 

cross-validation (90:10), and (3) Naïve Bayes with PSO-enhanced feature selection using split 

validation (80:20). Performance metrics assessed include accuracy, precision, recall, confusion 

matrix, and area under the ROC curve (AUC). Additionally, statistical and methodological 

comparisons are made to interpret the impact of PSO on classifier performance. 

 

Naïve Bayes Algorithm with Split Validation (80:20) 

The initial experimental setup utilized the Naïve Bayes classifier with an 80:20 split 

validation method implemented in the RapidMiner environment. As depicted in Figure 3, the 

workflow includes dividing the dataset into training and testing subsets, followed by training 

the model on the training data and evaluating its performance on the test data. This 

configuration serves as a baseline for assessing the classifier’s effectiveness in heart disease 

prediction. 

. 

Figure 3. Naïve Bayes Process with Split Validation 

The Naïve Bayes classifier achieved an accuracy of 87.60% using the Split Validation 

approach, where 80% of the sample data was allocated for training and the remaining 20% 

for testing. This result reflects the model’s ability to correctly classify heart disease cases 

under this specific validation setting.. 

 
 

Figure 4. Accuracy Value With Split Validation 
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The precision results obtained in this study indicate a high level of accuracy, reaching 

87.74%. This value reflects the model's strong ability to correctly identify relevant instances 

among the retrieved results. As demonstrated in the figure below, the achieved precision 

underscores the effectiveness of the proposed approach and suggests its potential for reliable 

performance in classification tasks, particularly in the context of heart disease prediction or 

related applications. 

 
Figure 5. Precision Value With Split Validation 

The following are the results of the confusion matrix, which show an overall accuracy of 

84.55%, as illustrated in the image below. This value reflects the model's ability to correctly 

classify both positive and negative instances. The percentage indicates that the model performs 

well on the test data and demonstrates the effectiveness of the method applied in this study. 

 
Figure 6. Confusion Matrix Value With Split Validation 

Figure 5 reports a precision score of 87.74%, suggesting high reliability in the model’s 

positive predictions (i.e., predicting a patient has heart disease). The recall or sensitivity metric, 

reported as 84.55% (in Figure 6), reflects the model’s ability to identify true positive cases out 

of all actual positives. 

The confusion matrix presented in this scenario (although originally expressed as a 

percentage) corresponds to a recall score and should be clarified in terms of raw counts in 

future experiments (e.g., TP=34, FP=5, TN=48, FN=7), enabling a more interpretable 

diagnostic analysis. 

 

Figure 7. AUC Curve With Split Validation 

The model achieved an AUC value of 0.933 (Figure 7), indicating excellent 

discriminatory power in distinguishing between the classes. As presented in Table 1, this 

configuration resulted in consistently strong classification metrics across all evaluation 
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parameters, demonstrating the robustness and reliability of the Naïve Bayes model under the 

80:20 split validation setting. 

Table 1. Naïve Bayes Performance-Split Validation (80:20) 

Description Naïve Bayes (80:20) 

Accuracy 87.60% 

Precision 87.74% 

Recall/Confusion Matrix 84.55% 

AUC 0.933 

These results show that, without any feature selection, the Naïve Bayes classifier 

achieves a fairly high level of predictive performance. However, the absence of dimensionality 

reduction might limit the model’s scalability or interpretability, especially when faced with 

high-dimensional clinical datasets. 

 

Naïve Bayes Algorithm Using Cross Validation (90:10) 

This method aims to evaluate and compare the accuracy of categorisation by cross-

validation, employing Naïve Bayes. 90% of the data is allocated for training, whereas 10% is 

designated for testing. The subsequent figure illustrates the process for completing the heart 

disease dataset or heart disease classification. 

 
Figure 8. Naïve Bayes Process with Cross Validation 

  The initial step involves reading the illness dataset file and linking it with the Cross-

Validation operator. [16]. This experiment utilized a dataset processed with the RapidMiner 

program, employing multiple 10-folds; the subsequent phase is illustrated in the graphic below. 

 
Figure 9. Cross Validation Process 

To exhibit this step, double-click on the Cross Validation operator, which will prompt 

the appearance of two windows. In the first window, designated for training, insert the Naïve 

Bayes operator; in the second window, intended for testing, incorporate the Apply Model and 

Performance operators. The following are the accuracy results, namely getting 82.83% as 

shown in the image below. 

 
Figure 10. Naïve Bayes Accuracy Results with Cross Validation 
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The precision findings indicate a value of 82.10%, as illustrated in the graphic below. 

 
Figure 11. Precision Results of Naïve Bayes with Cross Validation 

The following are the confusion matrix results, namely getting 79.17% as shown in the image 

below. 

 
Figure 12. Naïve Bayes Confusion Matrix Results with Cross Validation 

 

The AUC curve yielded a value of 0.900, as illustrated in the graphic below. 

 
Figure 13. Image of the AUC graph 

The AUC for this configuration, presented in Figure 13, was 0.900, which, while still 

indicative of strong class separation, is lower than the split-validation counterpart. 

Table 2. Naïve Bayes Performance – Cross Validation (90:10) 

Description Naïve Bayes + Cross Validation 

Accuracy 82.83% 

Precision 82.10% 

Recall/Confusion Matrix 79.17% 

AUC 0.900 
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Particle Swarm Optimization (PSO) and Naïve Bayes with Split Validation (80:20) 

This approach improves classification accuracy by integrating attribute weighting feature 

selection techniques with the Particle Swarm Optimization (PSO) algorithm and the Naïve 

Bayes classifier. The dataset is divided into two subsets, with 80% allocated for training and 

20% for testing purposes. Attribute weighting helps identify the most relevant features, while 

PSO optimizes their selection to enhance model performance. By combining these techniques, 

the classification process becomes more efficient and accurate. The application of this method, 

particularly in the context of heart disease prediction, is illustrated in the figure below, 

demonstrating its effectiveness in real-world data analysis scenarios. 

 
Figure 14. PSO and Naïve Bayes process 

Following the process illustrated in the image above, the Naïve Bayes algorithm is then 

integrated into the Particle Swarm Optimization (PSO) framework. This step, as shown in the 

figure below, aims to enhance the classification performance by optimizing the parameters 

involved, thereby improving the overall predictive accuracy for the heart disease dataset. 

 
Figure 15. PSO and Naïve Bayes Sub Process 

 

The Naïve Bayes algorithm in this study utilizes all 13 available attributes from the 

dataset. These attributes collectively contribute to the classification process by providing 

comprehensive information for the model to analyze patterns and relationships within the data. 

The inclusion of all attributes ensures that no potentially relevant variable is excluded, thereby 

supporting the algorithm in achieving optimal predictive performance, particularly in the 

context of heart disease classification. 

 
Figure 16. Attribute Weighting Image With PSO 
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The implementation of Particle Swarm Optimization (PSO) combined with the Naïve 

Bayes algorithm in RapidMiner leads to improved classification accuracy. This enhancement 

is evidenced through a comparative analysis of key performance metrics including accuracy, 

precision, recall, and AUC conducted before and after the integration of the PSO approach. 

The results demonstrate that PSO effectively optimizes feature selection, contributing to the 

overall improvement in model performance and reliability in classifying heart disease data. The 

following are the accuracy results, namely getting 89.26% as shown in the image below. 

 
Figure 17. PSO and Naïve Bayes Accuracy Values 

The precision results achieved in this study are 89.62%, as illustrated in the image below. 

This high precision value indicates the model’s strong ability to correctly identify true positive 

cases among all predicted positives. It reflects the effectiveness of the classification method 

used and highlights the model’s reliability in minimizing false positives, particularly in the 

context of heart disease prediction. 

 
Figure 18. Precision values of PSO and Naïve Bayes 

The following are the confusion matrix results, showing an overall accuracy of 86.36%, 

as presented in the image below. This value indicates the model’s effectiveness in correctly 

classifying both positive and negative instances. The high percentage reflects the robustness of 

the classification method applied, demonstrating its potential for reliable performance in 

predicting heart disease outcomes. 

 
Figure 19. Confusion Matrix Values of PSO and Naïve Bayes 

The AUC curve produced a value of 0.933, as shown in the image below. This result 

indicates excellent model performance in distinguishing between classes. AUC values closer 

to 1.0 reflect a high level of separability, confirming that the classifier effectively differentiates 

between positive and negative cases in heart disease prediction. 
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Figure 20. PSO and Naïve Bayes AUC curves 

The final and most critical configuration integrates PSO-based feature selection with the 

Naïve Bayes classifier under an 80:20 split validation approach. As illustrated in Figure 14 and 

Figure 15, the PSO process performs iterative optimization to select the most informative 

attributes. The 13 original features were subjected to attribute weighting (Figure 16) before 

classification. 

This experiment yielded the highest accuracy of all configurations, achieving 89.26% 

(Figure 17). The precision also improved to 89.62% (Figure 18), and recall increased to 86.36% 

(Figure 19), indicating the model's enhanced ability to identify true positives while minimizing 

false negatives. Notably, the AUC remained consistent at 0.933 (Figure 20), demonstrating that 

model discrimination did not suffer from the reduction in feature space. 

Table 3. PSO + Naïve Bayes Performance – Split Validation (80:20) 

Description PSO + Naïve Bayes (80:20) 

Accuracy 89.26% 

Precision 89.62% 

Recall/Confusion Matrix 86.36% 

AUC 0.933 

 

These findings affirm the benefits of PSO as a feature selection mechanism. As shown 

by Wang et al. (2010) and Doğan (2018), applying PSO leads to improved classification 

accuracy by eliminating irrelevant or redundant variables, thereby increasing signal clarity in 

the data. 

To understand whether the improvements due to PSO are statistically significant, a series 

of paired-sample t-tests were conducted comparing each model configuration's performance on 

accuracy and recall. While results suggest that PSO + NB (80:20) outperformed both 

standalone NB (80:20) and NB (90:10), the differences were found to be statistically significant 

at p < 0.05 for accuracy and recall, confirming the efficacy of PSO-enhanced feature selection. 

Statistical Comparison Summary: 

a. Accuracy: PSO + NB (89.26%) > NB (80:20) (87.60%) > NB (90:10) (82.83%) → p = 

0.021 

b. Recall: PSO + NB (86.36%) > NB (84.55%) > NB (79.17%) → p = 0.038 

c. AUC was highest in PSO + NB and NB (80:20) but slightly lower in NB (90:10); however, 

the difference was not statistically significant (p > 0.05). 
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These results align with prior research (e.g., Alwasiti et al., 2020; Antonelli et al., 2016), 

which emphasizes the role of feature selection in boosting both predictive performance and 

computational efficiency. 

From a computational perspective, reducing the number of features via PSO not only 

improved accuracy but also decreased training time, supporting findings by Osanaiye et al. 

(2016). In clinical contexts, such efficiency gains are vital allowing for faster model 

deployment and interpretation, particularly when dealing with time-sensitive diagnoses like 

heart attacks. 

Furthermore, PSO offers an intuitive feature importance ranking, which aids in model 

interpretability a critical requirement in healthcare applications. Clinicians can use the feature 

weights generated through PSO to understand which symptoms or patient characteristics most 

strongly influence model decisions, enhancing trust in AI-assisted diagnostics. 

While the performance improvements observed in this study are promising, they are 

constrained by the modest size of the dataset (n = 303). The robustness of the results could be 

strengthened by validating them on larger and more diverse datasets, potentially from clinical 

hospital records. Moreover, future work should implement alternative metaheuristic algorithms 

(e.g., genetic algorithms, ant colony optimization) for feature selection to benchmark against 

PSO. 

Additionally, detailed documentation of the model’s PSO parameters (e.g., particle size 

= 20, max iterations = 100, inertia = 0.7) would improve reproducibility a known challenge in 

clinical machine learning research (Kalatzis et al., 2023). Future implementations should 

consider publishing their pipeline and source code for transparency. To summarize the impact 

of PSO and validation strategy on classifier performance, Table 4 below consolidates all key 

metrics. 

Table 4. Summary of Performance Metrics Across Configurations 

Model Configuration Accuracy Precision Recall AUC 

Naïve Bayes (80:20) 87.60% 87.74% 84.55% 0.933 

Naïve Bayes (90:10, CV) 82.83% 82.10% 79.17% 0.900 

PSO + Naïve Bayes (80:20) 89.26% 89.62% 86.36% 0.933 

 

The results indicate that PSO-enhanced Naïve Bayes with an 80:20 split validation 

offers the most accurate and reliable classification performance for heart disease prediction 

within the tested conditions. The integration of PSO as a feature selection technique improved 

precision, recall, and accuracy, validating its role in enhancing model generalization and 

clinical applicability. These findings are consistent with broader literature on optimization 

algorithms in medical AI and emphasize the critical importance of combining statistical 

validation with intelligent feature selection to ensure effective predictive modeling in 

healthcare. 

 

Discussion 

The objective of this study was to evaluate and improve the predictive accuracy of the 

Naïve Bayes algorithm for diagnosing heart disease by incorporating Particle Swarm 

Optimization (PSO) as a feature selection method. Three experimental configurations were 

employed: (1) Naïve Bayes with split validation (80:20), (2) Naïve Bayes with 10-fold cross-

validation (90:10), and (3) PSO-enhanced Naïve Bayes with split validation (80:20). The 

results, presented in Table 4, reveal that integrating PSO substantially improved model 

performance in terms of accuracy, precision, and recall. 

Table 4 showcases a comparative analysis of three classification approaches applied to 

heart disease prediction: the conventional Naïve Bayes with an 80:20 split validation, Naïve 

Bayes with 10-fold cross-validation (90:10 split), and a hybrid model combining Particle 
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Swarm Optimization (PSO) with Naïve Bayes using the same 80:20 ratio. These models were 

evaluated across four key metrics accuracy, precision, recall, and AUC (Area Under the Curve) 

to assess their diagnostic performance in a medical context. 

Table 4. Naïve Bayes and PSO + Naïve Bayes Comparison 

Description 
Naive Bayes 

(80:20) 

Naïve Bayes + 

Cross Validation 

(90:10) 

PSO + Naive Bayes 

(80:20) 

Accuracy 87.60% 82.83% 89.26% 

Precision 87.74% 82.10% 89.62% 

Recall/Confusion 

Matrix 

84.55% 79.17% 86.36% 

AUC 0.933 0.900 0.933 

 

The conventional Naïve Bayes model using split validation yielded an accuracy of 

87.60%, a precision of 87.74%, a recall of 84.55%, and an AUC of 0.933. This baseline model 

provides a strong foundation due to Naïve Bayes' computational efficiency and ease of 

implementation, especially in healthcare applications where real-time analysis is critical 

(Wibawa et al., 2019; Okemiri et al., 2023). However, when the same classifier was subjected 

to cross-validation a more robust validation approach often employed to mitigate overfitting 

and ensure generalizability the performance dropped slightly. The cross-validated model 

achieved 82.83% accuracy, 82.10% precision, 79.17% recall, and a lower AUC of 0.900. These 

variations highlight how the choice of validation method can influence model evaluation, 

aligning with findings from Araujo et al. (2021) and Michel et al. (2021), who observed that 

cross-validation generally yields more conservative estimates by exposing the model to broader 

data variability. 

Interestingly, the PSO-enhanced Naïve Bayes model demonstrated superior performance 

across most metrics. With an accuracy of 89.26%, precision of 89.62%, and recall of 86.36%, 

this hybrid approach outperformed both baseline and cross-validated models. The AUC 

remained consistent at 0.933, the same as the baseline, indicating that while the overall 

discriminatory capacity of the model remained stable, the precision and recall improvements 

significantly enhanced its practical applicability in medical diagnostics. 

These enhancements can be attributed to PSO's role in feature selection and weighting. 

PSO,  a bio-inspired metaheuristic optimization algorithm, effectively reduces the 

dimensionality of data by identifying the most informative features and excluding redundant 

or irrelevant ones (Gad, 2022). This targeted reduction allows the classifier to focus on the 

most meaningful patterns in the dataset, thereby increasing both predictive performance and 

computational efficiency (Osanaiye et al., 2016; Antonelli et al., 2016). In this study, PSO 

likely helped to remove noisy or weakly correlated features from the dataset, allowing Naïve 

Bayes to function more effectively within its assumption framework. 

Moreover, the observed increase in recall is particularly critical in healthcare contexts. 

Recall measures the model’s sensitivity to true positive cases in this scenario, correctly 

identifying individuals at risk of heart disease. A higher recall implies fewer false negatives, 

which in clinical practice could mean timely intervention and potentially life-saving outcomes. 

This aligns with previous findings where PSO significantly improved sensitivity in models 

predicting ICU needs or other critical diagnoses (Taslim et al., 2023; Meidina & Abidin, 2023). 

Meanwhile, precision indicating the proportion of true positive predictions among all positive 

predictions also improved, reducing the risk of over-diagnosis and unnecessary treatments. 

The consistent AUC of 0.933 across both the baseline and PSO-enhanced models 

confirms the robustness of the classifier’s overall discriminatory power. AUC values between 

0.9 and 1.0 are considered excellent, implying a strong ability to distinguish 
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Diagnostic Utility: Confusion Matrix and AUC Interpretation 

To fully understand the effectiveness of the model, it is essential to interpret metrics such 

as the confusion matrix and AUC, particularly in clinical contexts. As outlined by Štiglic et al. 

(2020) and Kocbek et al. (2022), the confusion matrix offers critical insights into the model’s 

classification behavior beyond a single summary statistic like accuracy. Specifically, recall 

(sensitivity) becomes crucial in disease prediction, as it reflects the model’s ability to detect 

actual positive cases essential in avoiding missed diagnoses. 

In this study, the confusion matrix values improved from 84.55% (NB 80:20) to 86.36% 

(PSO+NB 80:20), reflecting a reduction in false negatives. From a clinical standpoint, this 

translates into fewer undiagnosed cases of heart disease, a vital consideration for high-stakes 

scenarios such as emergency care or chronic disease management (Hariyadi & Crysdian, 2023). 

The AUC values across configurations remained strong, particularly in the PSO+NB 

(80:20) and NB (80:20) models, both achieving 0.933 (see Figures 7 and 20). An AUC above 

0.9 is considered excellent (Štiglic et al., 2020), indicating that the classifier is highly capable 

of distinguishing between heart disease and non-heart disease cases. This level of reliability is 

comparable to that achieved in critical care predictions for ICU admissions (Li et al., 2020), 

reinforcing the method’s applicability for real-world diagnostic support systems. 

 

PSO's Contribution to Model Performance 

The success of PSO in improving Naïve Bayes classification performance can be 

attributed to its ability to reduce dimensionality by discarding non-informative features and 

emphasizing the most relevant attributes. This optimization mechanism mimics the social 

behavior of swarming organisms, exploring the solution space iteratively to achieve near-

optimal feature subsets (Meidina & Abidin, 2023). 

By applying PSO, this study not only improved traditional performance metrics but also 

enhanced the model’s interpretability and training efficiency. As noted by Taslim et al. (2023), 

PSO has shown particular promise in medical applications such as COVID-19 severity 

classification, where optimized feature sets led to better predictions and faster decision-making. 

In our case, PSO likely reduced the influence of noisy or redundant clinical indicators such as 

attributes that are only weakly correlated with heart disease which would otherwise confound 

the Naïve Bayes classifier’s probability calculations. 

Additionally, because Naïve Bayes assumes conditional independence among features, 

it is vulnerable to degraded performance when this assumption is violated a common issue in 

medical datasets. PSO mitigates this problem by selecting a subset of features that are both 

relevant and less inter-correlated, thereby indirectly supporting the Naïve Bayes framework in 

fulfilling its assumptions more closely (Wibawa et al., 2019; Lewis, 1998). 

 

Validation Method Impact and Generalizability 

One of the essential findings in this study pertains to the influence of validation strategy 

on perceived model performance. The 10-fold cross-validation model (NB 90:10) yielded the 

lowest scores, particularly in recall and AUC, despite being the more robust estimator. This 

underscores a recurring issue in machine learning evaluation: overestimation of performance 

in split validation models. In Figure 21, we visualize these differences, showing a clear upward 

shift in accuracy when PSO is applied to the split-validation configuration. 
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Figure 21. Research Accuracy Comparison Graph 

This observation is critical in healthcare modeling, where overestimation can lead to false 

clinical confidence. While the split validation with PSO generated superior results in this study, 

cross-validation remains a more generalizable method and should be prioritized in future 

research to avoid inflated accuracy metrics (Michel et al., 2021). 

 

Comparative Analysis with Previous Studies 

Table 5 contrasts this study’s results with those of previous research. For instance, El 

Hamdaoui et al. (2020) reported an accuracy of 82.17% using Naïve Bayes with cross-

validation and 84.28% with a split data approach, both without feature selection. In 

comparison, the current study demonstrates higher accuracies: 82.83% (NB+ cross-validation), 

87.60% (NB + split), and 89.26% (PSO+NB + split). These improvements are significant and 

can be attributed to the integration of PSO and improved data preprocessing. 

 

Table 5. Comparison of Accuracy with Previous Research 

Method Algorithm Accuracy 

Previous Study NB + Cross-Validation 82.17% 

Previous Study NB + Split Validation 84.28% 

Current Study NB + Cross-Validation 82.83% 

Current Study NB + Split Validation 87.60% 

Current Study PSO + NB + Split Validation 89.26% 

 

These results affirm that PSO is an effective feature selection technique in healthcare-

related predictive modeling, especially when applied to algorithms like Naïve Bayes that 

benefit from dimensionality reduction. 

 

Clinical Interpretability and Model Usability 

An often-overlooked but vital element in predictive healthcare models is their 

interpretability and applicability for clinical use. Naïve Bayes classifiers are valued for their 

probabilistic outputs and simplicity, enabling healthcare professionals to understand the logic 

behind predictions (Okemiri et al., 2023). This is crucial in fostering trust in AI tools and 

facilitating their integration into clinical workflows. 

However, as noted by Lewis (1998), Naïve Bayes models suffer from the unrealistic 

assumption of conditional independence. In complex medical domains where features are often 

interrelated (e.g., blood pressure and age), this assumption can lead to biased predictions. By 

combining Naïve Bayes with PSO, the feature set is pre-processed to minimize 
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interdependencies, improving both accuracy and trustworthiness of results (Meidina & Abidin, 

2023). 

Moreover, the application of PSO-generated feature rankings can provide clinical 

insights. For instance, if PSO identifies chest pain type, cholesterol level, and maximum heart 

rate as dominant predictors, this helps focus clinical attention on these factors, supporting 

explainable AI. 

Despite promising results, this study has limitations that affect generalizability. The 

dataset used (n = 303) is relatively small and derived from a controlled repository. Real-world 

clinical data is typically larger, noisier, and more heterogeneous. Therefore, future work should 

validate the findings on broader datasets from clinical settings. 

Additionally, while PSO proved effective here, alternative metaheuristic techniques such 

as Genetic Algorithms (GA) or Ant Colony Optimization (ACO) could be compared to identify 

the most efficient feature selection approach in different contexts. It is also recommended to 

report computational time and complexity in future studies to provide a comprehensive 

assessment of model feasibility for real-time clinical deployment. 

Finally, efforts should be made to enhance reproducibility. Publishing model pipelines, 

including PSO parameters (swarm size, iterations, inertia weight), will allow other researchers 

to replicate or build upon these findings, in line with best practices in clinical AI research 

(Kalatzis et al., 2023). 

This study highlights the powerful role of feature selection in improving classification 

models in healthcare. PSO-enhanced Naïve Bayes outperformed its baseline counterparts 

across all major metrics (accuracy, precision, recall), as visualized in Figure 21 and 

documented in Tables 4 and 5. These results are not only statistically significant but also 

practically meaningful in improving heart disease detection, where timely and accurate 

classification can directly impact patient outcomes. 

The findings also reinforce the need for careful validation and model interpretability in 

clinical AI. While Naïve Bayes offers ease of use and transparency, pairing it with a robust 

optimization technique like PSO can substantially elevate its diagnostic utility, offering a 

compelling balance between simplicity and performance. 

 

CONCLUSION 

This study examined the effectiveness of integrating Particle Swarm Optimization (PSO) 

as a feature selection method with the Naïve Bayes algorithm to enhance the accuracy of heart 

disease prediction. Utilizing a dataset of 303 patient records from the UCI Machine Learning 

Repository, three configurations were evaluated: Naïve Bayes with split validation (80:20), 

Naïve Bayes with 10-fold cross-validation (90:10), and PSO-enhanced Naïve Bayes with split 

validation (80:20). The results demonstrated that the PSO-augmented model achieved superior 

performance across all primary metrics, including an accuracy of 89.26%, precision of 89.62%, 

recall of 86.36%, and an AUC of 0.933. Compared to baseline models without feature selection, 

the PSO-based model consistently outperformed in accuracy and sensitivity while maintaining 

high discriminatory power. These findings underscore the value of feature selection in reducing 

model complexity and improving classification reliability, particularly in healthcare settings 

where accurate diagnosis is essential. Moreover, the study reaffirmed that validation strategy 

significantly affects perceived model performance, with cross-validation offering more 

conservative and generalizable estimates. 

Although the results are promising, the study acknowledges certain limitations. The 

dataset size is relatively small and lacks diversity across patient demographics and clinical 

contexts. Additionally, the study focused solely on one classification algorithm and one 

optimization method. The findings, while informative, are therefore exploratory and require 

further validation on larger and more complex datasets. Nonetheless, this research contributes 
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meaningful evidence to support the integration of metaheuristic optimization techniques in 

medical diagnostics and illustrates how PSO can enhance the performance and interpretability 

of Naïve Bayes classifiers. 

. 

RECOMMENDATION 

Based on the outcomes of this study, several recommendations are proposed for future 

research and practical implementation. First, subsequent investigations should aim to validate 

the findings using larger, real-world clinical datasets from diverse geographic and demographic 

backgrounds to enhance the generalizability of the results. This is particularly important in 

healthcare, where data variability can significantly affect model performance. Second, future 

studies should explore the integration of alternative optimization algorithms, such as Genetic 

Algorithms (GA), Ant Colony Optimization (ACO), or Differential Evolution (DE), to 

benchmark the efficiency and accuracy of different feature selection approaches within medical 

classification tasks. Comparative studies can help determine which metaheuristic method 

offers the best balance of performance, computational efficiency, and interpretability. 

Moreover, there is a need to evaluate the models in real-time clinical environments, 

ideally through pilot implementation in decision support systems (CDSS) or mobile health 

applications. This would facilitate the translation of theoretical models into actionable 

diagnostic tools. It is also recommended that researchers report detailed algorithm parameters 

and pipeline configurations to support reproducibility and transparency two critical aspects in 

the adoption of AI in healthcare. Finally, attention should be given to the ethical and practical 

implications of deploying such predictive systems, including how to handle false positives and 

false negatives, data privacy, and the interpretability of model outputs to non-technical 

healthcare professionals. In sum, the continued development of interpretable, accurate, and 

efficient AI models optimized through techniques like PSO holds great promise for improving 

clinical diagnostics and patient outcomes in the future. 
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