Identification of Promising Glyphosate-Degrading Bacteria Isolated from the Rhizosphere of Local Chili Pepper Plantation
DOI:
https://doi.org/10.33394/j-ps.v13i1.14449Keywords:
B. subtilis, glyphosate, biodegradation, species, 16s rRNA geneAbstract
The glyphosate’s continuous application in agricultural fields has caused adverse environmental effects. Utilizing indigenous microorganisms as glyphosate-degrading agents can be an effective and eco-friendly solution. Isolate Cf2, obtained from a local chili pepper plantation in Indonesia, grew as a co-dominant isolate in media with 50 ppm glyphosate, indicating its potential as glyphosate-degrading bacteria. However, this isolate cannot be applied yet because it has not been identified. Identification can provide initial insights into the safety of indigenous isolates for ecological application. Thus, this study aims to identify isolate Cf2 by utilizing the 16s rRNA gene sequence as the genetic marker. The data was compared to the database using the web-based BLAST2 program (version 2.13.0). Then, the evolutionary relationship of this isolate with its closest relatives was assessed through phylogenetic tree reconstruction. The results demonstrate that the isolate Cf2 has a sequence similarity of 98.88% with Bacillus subtilis. The phylogenetic tree reconstruction further indicates that isolate Cf2 forms a monophyletic clade with this species. Hence, it can be concluded that isolate Cf2 is indeed B. subtilis. This study is the first report of glyphosate-degrading B. subtilis isolated from chili pepper plantations in Indonesia, offering a new insight into bioremediation strategies.References
Abaza, S. (2020). What is and why do we have to know the phylogenetic tree? Parasitologists United Journal, 13(2), 68–71. https://doi.org/10.21608/puj.2020.35843.1082
Adelskov, J., & Patel, B. K. C. (2016). A molecular phylogenetic framework for Bacillus subtilis using genome sequences and its application to Bacillus subtilis subspecies stecoris strain D7XPN1, an isolate from a commercial food-waste degrading bioreactor. 3 Biotech, 6(1). https://doi.org/10.1007/s13205-016-0408-8
Andriani, L. T., Aini, L. Q., & Hadiastono, T. (2017). Glyphosate biodegradation by plant growth promoting bacteria and their effect to paddy germination in glyphosate contaminated soil. Journal of Degraded and Mining Lands Management, 05(01), 995–1000. https://doi.org/10.15243/jdmlm.2017.051.995
Badani, H., Djadoun, F., & Haddad, F. Z. (2023). Effects of the herbicide glyphosate [n-(phosphonomethyl) glycine] on biodiversity and organisms in the soil-A review. European Journal of Environmental Sciences, 13(1), 5–15. https://doi.org/10.14712/23361964.2023.1
Bukin, Y. S., Galachyants, Y. P., Morozov, I. V., Bukin, S. V., Zakharenko, A. S., & Zemskaya, T. I. (2019). The effect of 16s rRNA region choice on bacterial community metabarcoding results. Scientific Data, 6. https://doi.org/10.1038/sdata.2019.7
Dunlap, C. A., Bowman, M. J., & Zeigler, D. R. (2020). Promotion of Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris to species status. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 113(1), 1–12. https://doi.org/10.1007/s10482-019-01354-9
Ermakova, I. T., Shushkova, T. V., & Leont’evskii, A. A. (2008). Microbial degradation of organophosphonates by soil bacteria. Microbiology, 77(5), 615–620. https://doi.org/10.1134/S0026261708050160
Fan, J., Yang, G., Zhao, H., Shi, G., Geng, Y., Hou, T., & Tao, K. (2012). Isolation, identification, and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J. Gen. Appl. Microbiol., 58, 263–271. https://doi.org/10.2323/jgam.58.263
Feng, D., Malleret, L., Chiavassa, G., Boutin, O., & Soric, A. (2020). Biodegradation capabilities of acclimated activated sludge towards glyphosate: Experimental study and kinetic modeling. Biochemical Engineering Journal, 161. https://doi.org/10.1016/j.bej.2020.107643
Firdous, S., Iqbal, S., & Anwar, S. (2020). Optimization and modeling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology. Pedosphere, 30(5), 618–627. https://doi.org/10.1016/S1002-0160(17)60381-3
Hall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 30(5), 1229–1235. https://doi.org/10.1093/molbev/mst012
Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., Butterfield, C. N., Hernsdorf, A. W., Amano, Y., Ise, K., Suzuki, Y., Dudek, N., Relman, D. A., Finstad, K. M., Amundson, R., Thomas, B. C., & Banfield, J. F. (2016). A new view of the tree of life. Nature Microbiology, 1(5). https://doi.org/10.1038/nmicrobiol.2016.48
Ibrahim, N. E., Sevakumaran, V., & Ariffin, F. (2023). Preliminary study on glyphosate-degrading bacteria isolated from agricultural soil. Environmental Advances, 12. https://doi.org/10.1016/j.envadv.2023.100368
Kryuchkova, Y. V., Burygin, G. L., Gogoleva, N. E., Gogolev, Y. V., Chernyshova, M. P., Makarov, O. E., Fedorov, E. E., & Turkovskaya, O. V. (2014). Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiological Research, 169(1), 99–105. https://doi.org/10.1016/j.micres.2013.03.002
Kulikova, N. A., Zhelezova, A. D., Filippova, O. I., Plyushchenko, I. V., & Rodin, I. A. (2020). The degradation of glyphosate and its effect on the microbial community of Agro-Sod–Podzolic soil under short-term model experiment conditions. Moscow University Soil Science Bulletin, 75(3), 138–145. https://doi.org/10.3103/s0147687420030035
Maggi, F., la Cecilia, D., Tang, F. H. M., & McBratney, A. (2020). The global environmental hazard of glyphosate use. Science of the Total Environment, 717. https://doi.org/10.1016/j.scitotenv.2020.137167
Manogaran, M., Adeela Yasid, N., & Aqlima Ahmad, S. (2017). Mathematical modelling of glyphosate degradation rate by Bacillus subtilis. In JOBIMB (Vol. 5, Issue 1). http://journal.hibiscuspublisher.com/index.php/JOBIMB/index
Manogaran, M., Shukor, M. Y., Yasid, N. A., Johari, W. L. W., & Ahmad, S. A. (2017). Isolation and characterization of glyphosate-degrading bacteria isolated from local soils in Malaysia. Rendiconti Lincei, 28(3), 471–479. https://doi.org/10.1007/s12210-017-0620-4
Maughan, H., & Van der Auwera, G. (2011). Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. In Infection, Genetics and Evolution (Vol. 11, Issue 5, pp. 789–797). https://doi.org/10.1016/j.meegid.2011.02.001
Maulida, K. Z. R., & Lisdiana, L. (2024). Identifikasi secara fenotipik dan genomik isolat bakteri potensial pendegradasi herbisida glifosat dari rhizosfer cabai rawit. LenteraBio, 13(2), 253–261. https://doi.org/https://doi.org/10.26740/lenterabio.v13n2.p253-261
Nguyen, N. T., Vo, V. T., Nguyen, T. H. P., & Kiefer, R. (2022). Isolation and optimization of a glyphosate-degrading Rhodococcus soli G41 for bioremediation. Archives of Microbiology, 204(5). https://doi.org/10.1007/s00203-022-02875-0
Nikmah, A. L., & Lisdiana, L. (2024). Penapisan bakteri rizosfer pendegradasi herbisida glifosat dari tanah pertanian cabai rawit (Capsicum frutescent L.) screening of glyphosate herbicide-degrading rhizosphere bacteria from chili pepper (Capsicum frutescent L.) farm soil. LenteraBio, 13(1), 24–31. https://doi.org/https://doi.org/10.26740/lenterabio.v13n1.p24-31
Pileggi, M., Pileggi, S. A. V., & Sadowsky, M. J. (2020). Herbicide bioremediation: from strains to bacterial communities. In Heliyon (Vol. 6, Issue 12). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2020.e05767
Pollegioni, L., Schonbrunn, E., & Siehl, D. (2011). Molecular basis of glyphosate resistance - different approaches through protein engineering. In FEBS Journal (Vol. 278, Issue 16, pp. 2753–2766). https://doi.org/10.1111/j.1742-4658.2011.08214.x
Rossi, F., Carles, L., Donnadieu, F., Batisson, I., & Artigas, J. (2021). Glyphosate-degrading behavior of five bacterial strains isolated from stream biofilms. Journal of Hazardous Materials, 420. https://doi.org/10.1016/j.jhazmat.2021.126651
Rusnam, Rahman, M. F., Khayat, M. E., Nasution, F. I., Umar, A. M., & Yakasai, H. M. (2023). Characterisation of a Bacillus sp. isolated from soils near lake Maninjau capable of degrading glyphosate. Journal of Environmental Microbiology and Toxicology, 11(1), 69–76. https://doi.org/10.54987/jemat.v11i1.886
Singh, B., & Singh, K. (2017). Bacillus: As bioremediator agent of major environmental pollutants. In Bacilli and Agrobiotechnology (pp. 35–55). Springer International Publishing. https://doi.org/10.1007/978-3-319-44409-3_2
Sun, M., Li, H., & Jaisi, D. P. (2019). Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil-water system. Water Research, 163. https://doi.org/10.1016/j.watres.2019.07.007
Xu, X., Nielsen, L. J. D., Song, L., Maróti, G., Strube, M. L., & Kovács, Ã. T. (2023). Enhanced specificity of Bacillus metataxonomics using a tuf -targeted amplicon sequencing approach. ISME Communications, 3(1). https://doi.org/10.1038/s43705-023-00330-9
Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, K. H., Whitman, W. B., Euzéby, J., Amann, R., & Rosselló-Móra, R. (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, 12(9), 635–645. https://doi.org/10.1038/nrmicro3330
Yu, X. M., Yu, T., Yin, G. H., Dong, Q. L., An, M., Wang, H. R., & Ai, C. X. (2015). Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genetics and Molecular Research, 14(4), 14717–14730. https://doi.org/10.4238/2015.November.18.37
Zhan, H., Feng, Y., Fan, X., & Chen, S. (2018). Recent advances in glyphosate biodegradation. In Applied Microbiology and Biotechnology (Vol. 102, Issue 12, pp. 5033–5043). Springer Verlag. https://doi.org/10.1007/s00253-018-9035-0
Zhang, L., Rana, I., Shaffer, R. M., Taioli, E., & Sheppard, L. (2019). Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. In Mutation Research - Reviews in Mutation Research (Vol. 781, pp. 186–206). Elsevier B.V. https://doi.org/10.1016/j.mrrev.2019.02.001
Zhang, Q., Li, Y., Kroeze, C., Xu, W., Gai, L., Vitsas, M., Ma, L., Zhang, F., & Strokal, M. (2024). A global assessment of glyphosate and AMPA inputs into rivers: Over half of the pollutants are from corn and soybean production. Water Research, 261. https://doi.org/10.1016/j.watres.2024.121986
Zhang, W., Li, J., Zhang, Y., Wu, X., Zhou, Z., Huang, Y., Zhao, Y., Mishra, S., Bhatt, P., & Chen, S. (2022). Characterization of a novel glyphosate-degrading bacterial species, Chryseobacterium sp. Y16C, and evaluation of its effects on microbial communities in glyphosate-contaminated soil. Journal of Hazardous Materials, 432. https://doi.org/10.1016/j.jhazmat.2022.128689
Zhao, H., Tao, K., Zhu, J., Liu, S., Gao, H., & Zhou, X. (2015). Bioremediation potential of glyphosate-degrading Pseudomonas spp. strains isolated from contaminated soil. Journal of General and Applied Microbiology, 61(5), 165–170. https://doi.org/10.2323/jgam.61.165
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution 4.0 International License.