Optimization of Support Vector Machine Algorithm Using Stunting Data Classification
DOI:
https://doi.org/10.33394/j-ps.v11i1.6619Keywords:
SVM, PSO, Linear, Polynomial, Sigmoid, Radial Basic Function, StuntingAbstract
Several studies from Indonesia reveal that malnutrition and stunting are still severe concerns to be addressed in the future. The complexity of the problem of stunting or nutritional status requires the responsibility of all parties, including science and technology. The issue of monitoring and data collection related to stunting or the nutritional status of children in Indonesia, especially Medan City, North Sumatra Province, is an essential factor in determining the calculations carried out by each Community Health Center with many attributes. Currently, the Support Vector Machine method is a solution to increase government intervention's effectiveness in classifying malnutrition and stunting. However, the Support Vector Machine algorithm still needs to improve, namely the difficulty of selecting the right and optimal features for the attribute weights, causing a low prediction accuracy. Therefore, researchers aim to optimize the Support Vector Machine Algorithm with Particle Swarm Optimization using Linear, Polynomial, Sigmoid, and Radial Basic Function kernels. The results were obtained from research utilizing nutritional status data, that performance in improving the Support Vector Machine algorithm based on Particle Swarm Optimization using four kernel tests, namely Linear, Polynomial, Sigmoid, and Radial Basic Function obtained different results, not all kernels in this study can improve accuracy well. The best performance is using the Radial Basic Function kernel with an Accuracy value of 78%, Precision of 89%, Recall of 66%, and F1-Score of 72%, so it is feasible for accurate information regarding the classification of nutritional status.References
Beal, T., Tumilowicz, A., Sutrisna, A., Izwardy, D., & Neufeld, L. M. (2018). A review of child stunting determinants in Indonesia. Maternal and Child Nutrition, 14(4), 1–10. https://doi.org/10.1111/mcn.12617
Byna, A., & Anisa, F. N. (2018). Backward Elimination untuk meningkatkan Akurasi Kejadian Stunting Dengan Analisis Algoritma Support Vector Machine. Dinamika Kesehatan, 9(2), 217–225.
Desyanti, C., & Nindya, T. S. (2017). Hubungan Riwayat Penyakit Diare dan Praktik Higiene dengan Kejadian Stunting pada Balita Usia 24-59 Bulan di Wilayah Kerja Puskesmas Simolawang, Surabaya. Amerta Nutrition, 1(3), 243. https://doi.org/10.20473/amnt.v1i3.6251
Indraswari, R., Zainal Arifin, A., & Darlis, H. (2017). RBF Kernel Optimazation Method With Particle Swarm Optimization On SVM Using The Analysis Of Input Data’S Movement. Journal of Computer Science and Information, 13(3), 1576–1580. https://doi.org/http://dx.doi.org/10.21609/jiki.v10i1.410 RBF
Isnain, A. R., Sakti, I. A., Alita, D., & Marga, N. S. (2021). Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm. Jdmsi, 2(1), 31–37. https://t.co/NfhnfMjtXw
Kusumaningrum, R., Indihatmoko, T. A., Juwita, S. R., Hanifah, A. F., Khadijah, K., & Surarso, B. (2020). Benchmarking of Multi-Class Algorithms for Classifying Documents Related to Stunting. Applied Sciences (Switzerland), 10(23), 1–13. https://doi.org/10.3390/app10238621
Nalatissifa, H., Gata, W., Diantika, S., & Nisa, K. (2021). Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja. Jurnal Informatika Universitas Pamulang, 5(4), 578. https://doi.org/10.32493/informatika.v5i4.7575
Ohyver, M., Moniaga, J. V., Yunidwi, K. R., & Setiawan, M. I. (2017). Logistic Regression and Growth Charts to Determine Children Nutritional and Stunting Status: A Review. Procedia Computer Science, 116, 232–241. https://doi.org/10.1016/j.procs.2017.10.045
Peraturan Menteri Kesehatan Republik Indonesia Nomor 2 Tahun 2020 Tentang Standar Antropemetri Anak. (2020).
Perdana, A. Y., Latuconsina, R., Dinimaharawati, A., & Telkom, U. (2021). Prediksi Stunting Pada Balita Dengan Algoritma Random Forest. ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021, 8(5), 6650–6656.
Rachmi, C. N., Agho, K. E., Li, M., & Baur, L. A. (2016). Stunting, underweight and overweight in children aged 2.0-4.9 years in Indonesia: Prevalence trends and associated risk factors. PLoS ONE, 11(5), 1–17. https://doi.org/10.1371/journal.pone.0154756
Rahman, S. M. J., Ahmed, N. A. M. F., Abedin, M. M., Ahammed, B., Ali, M., Rahman, M. J., & Maniruzzaman, M. (2021). Investigate the risk factors of stunting, wasting, and underweight among under-five Bangladeshi children and its prediction based on machine learning approach. PLoS ONE, 16(6 June 2021), 1–11. https://doi.org/10.1371/journal.pone.0253172
Sasongko, T. B., & Arifin, O. (2019). Implementasi Metode Forward Selection pada Algoritma SVM dan Naive Bayes Classifier. 6(4), 383–388. https://doi.org/10.25126/jtiik.201961000
Susilowati, E., Sabariah, M. K., & Gozali, A. A. (2015). Implementasi Metode Support Vector Machine untuk Melakukan Klasifikasi Kemacetan Lalu Lintas Pada Twitter. E-Proceeding of Engineering, 2(1), 1478–1484.
Titimeidara, M. Y., & Hadikurniawati, W. (2021). Implementasi Metode Naïve Bayes Classifier Untuk Klasifikasi Status Gizi Stunting Pada Balita. Jurnal Ilmiah Informatika, 9(01), 54–59. https://doi.org/10.33884/jif.v9i01.3741
Wiraguna, I. K. A., Setyati, E., & Pramana, E. (2022). Prediksi Anak Stunting Berdasarkan Kondisi Orang Tua Dengan Metode Support Vector Machine Dengan Study Kasus Di Kabupaten Tabanan-Bali. Smatika Jurnal, 12(01), 47–54. https://doi.org/10.32664/smatika.v12i01.662
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution 4.0 International License.