Rainfall Characteristics In Medan City With Pearson Correlation Analysis (Case Study Of February 27, 2022)

Authors

  • Endah Paramita Department of Physics, Faculty of Mathematics and Natural Sciences – Universitas Sumatera Utara, Jl. Dr. T. Mansur No.9, Padang Bulan, Kec. Medan Baru, Kota Medan, Sumatera Utara
  • Syahrul Humaidi Department of Physics, Faculty of Mathematics and Natural Sciences – University of North Sumatra, Jl. Dr. T. Mansur No.9, Padang Bulan, Kec. Medan Baru, Kota Medan, Sumatera Utara
  • Yahya Darmawan School of Meteorology, Climatoly and Geophysics (STMKG), Jl. Perhubungan I No.5, Pd. Betung, Kec. Pd. Aren, Kota Tangerang Selatan, Banten

DOI:

https://doi.org/10.33394/j-ps.v11i2.7852

Keywords:

Pearson correlation, rainfall, DMI, ENSO, SST Anomalies and SOI

Abstract

February is climatologically the first peak of the dry season in the North Sumatra region, but floods can still occur. This study analyzes the characteristics of rainfall patterns that occur during extreme rainfall that occurred in the Medan area on February 27, 2022 which resulted in flooding in several areas in Medan with Pearson correlation. The data used are rainfall data, satellite data, radar and other atmospheric dynamics analysis data. Based on dynamic analysis on February 27, 2022, the growth of CB clouds began at 14.00 WIB reaching its peak at 17.00 WIB where the peak temperature of the cloud reached 82.4 ° C and cloud growth lasted until 21.00 WIB, where the rain lasted long enough to cause hydrometeorological disasters (floods) to occur. The Pearson correlation coefficient method (r) used to analyze the relationship between rainfall and DMI, ENSO, SST Anomalies and SOI conditions can be seen that the dominant influence is SST Anomalies and SOI, where in February conditions that affect rainfall are ENSO with a correlation value of 0.36272 and SST Anomalies with a correlation value of 0.37548.

References

Abay, J., F., M., dan Haryanto, Y., D., 2021, Analisis Dinamika Atmosfer Dan Distribusi Awan Konvektif Menggunakan Teknik Red Green Blue (Rgb) Pada Citra Satelit Himawari-8 (Studi Kasus: Banjir Jakarta 31 Desember 2019 – 1 Januari 2020), Megasains, Vol. 12, No. 1, Hlm. 34-39.

A. Fadholli, â€Pengolahan Data Citra Satelit MTSAT Menggunakan Aplikasi Sataid (Satelite Animations And Interactive Diagnosis)â€, Jurnal Informatika & Komputasi Sekolah Tinggi Manajemen dan Ilmu Komputer, vol. 7, no. 1, hal. 53-62, April 2013

Akihiro, S., 2020, Introduction to Himawari-8 RGB composite imagery, Meteorological Satellite Center Technical Note No. 65 October 2020.

Athoillah, I., Dewi, S., Renggono, F. (2016). Perbandingan Pengukuran Radiometer dan Radiosonde pada Musim Hujan di Dramaga Bogor. Jurnal Sains & Teknologi Modifikasi Cuaca, 17(2), 75-82.

Bessho, k., et al., 2016, “An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites,†J. Meteorol. Soc. Japan. Ser. II, vol. 94, no. 2, Pp. 151–183.

Budiarti, M., Muslim, M., Ilhamsyah, Y. (2012). Studi Indeks Stabilitas Udara Terhadap Prediksi Kejadian Badai Guntur (Thunderstorm) di Wilayah Stasiun Meteorologi Cengkareng Banten. Jurnal Meteorologi dan Geofisika, 13(2), 111-117.

BMKG, 2010, Peraturan Kepala Badan Meteorologi Klimatologi dan Geofisika Nomor: KEP.009 Tahun 2010 tentang Prosedur Standar Operasional Pelaksanaan Peringatan Dini, Pelaporan, dan desiminasi Informasi Cuaca Ekstrem, BMKG, Jakarta.

Bogdan, R. dan Biklen, S., K., 1997, Qualitative research for education, Allyn & Bacon Boston, MA.

Dwitrisna, M., F., dan Haryanto, Y., D., 2022, Analisis Sebaran Awan Konvektif Penyebab Banjir Di Kabupaten Nganjuk Menggunakan Metode Red Green Blue dan Cloud Convective Overlays, Jurnal Sains dan Teknologi, Vol.3(1), Hlm. 42-50.

Ferdiansyah, A. (2012). Potensi Parameter Keluaran RAOB (Rawinsonde Observation Programs) Sebagai Indikator Kunci dalam Analisis Curah Hujan. Skripsi. FMIPA, Institut Pertanian Bogor.

Herujono, 2000. Modul Pendahuluan Radar Cuaca. Badan Pendidikan dan Latihan Perhubungan Akademi Meteorologi dan Geofidika (AMG). Jakarta

Meilani., Wahid, A., Bernandus. (2014). Analisa Data Radiosonde untuk Mengetahui Potensi Kejadian Badai Guntur di Bandar Udara El Tari Kupang. Prosiding Seminar Nasional Geofisika 2014, 159-163.

Meteorological Satelite Center (MSC), â€SATAID Operational Manualâ€, Japan Meteorology Agency, 2006.

Novianti, D, Anjani, D., Ulfah. (2015). Analisis Indeks Kejadian Badai Guntur di Stasiun Meteorologi Cengkareng dengan Metode Rapid Miner dan Fuzzy Logic Guna Keselamatan Penerbangan. Semnasteknomedia Online, 3(1), 355-360.

Pusat Meteorologi Publik Badan Meteorologi Klimatologi dan Geofisika, â€Pedoman operasional pengelolaan citra Satelit Cuacaâ€, Pusat Meteorologi Publik, Badan Meteorologi Klimatologi dan Geofisika, 2011.

Ratnam, M.V., Santhi, Y.D., Rajeevan, M., Rao, S.V.B. (2013). Diurnal Variability of Stability Indices Observed Using Radiosonde Observations over a Tropical Station: Comparison with Microwave Radiometer Measurements. Atmospheric Research, 124, 21-33. doi: 10.1016/J.Atmosres.2012.12.007.

Sucahyono, D., dan Ribudiyanto, K., 2013, Cuaca dan Iklim Ekstrim di Indonesia. Jakarta: Pusat Penelitian dan Pengembangan Badan Meteorologi Klimatologi dan Geofisika.

Tajbakhsh, S., Ghafarian, P., Sahraian, F. (2012). Instability Indices and Forecasting Thunderstorms: The Case of 30 April 2009. Natural Hazards Earth System Sciences, 12(2), 403–413.

Downloads

Published

2023-04-30

How to Cite

Paramita, E., Humaidi, S., & Darmawan, Y. (2023). Rainfall Characteristics In Medan City With Pearson Correlation Analysis (Case Study Of February 27, 2022). Prisma Sains : Jurnal Pengkajian Ilmu Dan Pembelajaran Matematika Dan IPA IKIP Mataram, 11(2), 561–568. https://doi.org/10.33394/j-ps.v11i2.7852

Issue

Section

Research Articles