Characterization of Meteorological Drought Using Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index Methods in North Sumatera

Authors

  • Fanly Parhimpunan Manullang Department of Physics, Faculty of Mathematics and Natural Sciences – Universitas Sumatera Utara, Jl. Dr. T. Mansur No.9, Padang Bulan, Medan 20222
  • Kerista Tarigan Faculty of Mathematics and Natural Sciences, University of Sumatera Utara, Medan
  • Marhaposan Situmorang Department of Physics, Faculty of Mathematics and Natural Sciences – Universitas Sumatera Utara, Jl. Dr. T. Mansur No.9, Padang Bulan, Medan 20222
  • Syahrul Humaidi Department of Physics, Faculty of Mathematics and Natural Sciences – Universitas Sumatera Utara, Jl. Dr. T. Mansur No.9, Padang Bulan, Medan 20222
  • Deassy Eirene Diana Doloksaribu Department of Physics, Faculty of Mathematics and Natural Sciences – Universitas Sumatera Utara, Jl. Dr. T. Mansur No.9, Padang Bulan, Medan 20222
  • Yahya Darmawan School of Meteorology, Climatology and Geophysics (STMKG), Jl. Perhubungan I No.5, Pd. Betung, Tangerang Selatan 15221

DOI:

https://doi.org/10.33394/j-ps.v11i4.9961

Keywords:

SPI, SPEI, ENSO, IOD, Drought, North Sumatera

Abstract

Climate variability in Indonesia is influenced by several global factors including El Niño Southern Oscillation and Indian Ocean Dipole, one consequence of climate variability is drought. The drought index is used to identify and describe the level of drought in an area, the methods used in this study are the Standardized Precipitation Index and the Standardized Precipitation Evapotranspiration Index which are calculated based on climate data with a span of 24 years as many as 67 rain observation posts in North Sumatra using R Studio software. The purpose of this study is to determine the factors of global climate phenomena that affect drought in North Sumatra and its impact on rice crop productivity and analyze drought characteristics spatially and temporarily. The resulting index values are then analyzed using correlation methods to see their relationship with ENSO and IOD. The results showed that the incidence of the ENSO phenomenon had a very strong relationship with meteorological drought in North Sumatra with a correlation value range of -0.85 to -0.97, and as many as 62.5% of 32 districts experienced a decrease in rice crop productivity during El Niño with strong intensity in 2015.

References

Blauhut, V., Gudmundsson, L., & Stahl, K. (2015). Towards pan-European drought risk maps: Quantifying the link between drought indices and reported drought impacts. Environmental Research Letters, 10(1). https://doi.org/10.1088/1748-9326/10/1/014008

Faisol, A., &; Budiyono. (2022). Comparison between Standardized Precipitation Index (SPI) Method and Standardized Precipitation Evapotranspiration Index (SPEI) for Meteorological Drought Identification in West Papua Province Comparison between Standardized Precipitation Index (SPI. Agritechnology, 5(2).

Hermawan, E., Satyawardhana, H., Witono, A., Berliana, S., & Rustiana, S. (2016). Status Terkini Prediksi Curah Hujan MK 2016 dan MH 2016/2017 (Studi Kasus: DI Yogyakarta). Prosiding Seminar Nasional Geografi UMS 2016, Imc, 9–24. https://publikasiilmiah.ums.ac.id/xmlui/handle/11617/8202

Jun-Ichi, H., Mori, S., Kubota, H., Yamanaka, M. D., Haryoko, U., Lestari, S., Sulistyowati, R., & Syamsudin, F. (2012). Interannual rainfall variability over northwestern Jawa and its relation to the Indian Ocean Dipole and El Niño-Southern Oscillation events. Scientific Online Letters on the Atmosphere, 8(1), 69–72. https://doi.org/10.2151/sola.2012-018

Li, S., Wang, X., Gao, C., & Ye, X. (2019). Meteorological Drought Warning Research in Fujian Province, China during 1971-2016. Journal of Geoscience and Environment Protection, 07(11), 220–228. https://doi.org/10.4236/gep.2019.711016

Lia, R. Y., I Nyoman, S., &; Ismail, Y. (2022). The relationship of drought events with the El-Nino phenomenon in the North Lombok Regency area. Scientific Journal of Agrocomplex Students, 1(3), 285–293. https://doi.org/10.29303/jima.v1i3.2147

McKee, T. B., Doesken, N. J., & Kleist, J. (1993). THE RELATIONSHIP OF DROUGHT FREQUENCY AND DURATION TO TIME SCALES. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California.

Monteith J. (1965). Evaporation and Environment. Symposia of the Society for Experimental Biology, 19(2393175), 205–234.

Muharsyah, R. (2016). THE DROUGHT STUDY USED THE STANDARD PRECIPITATION INDEX IN INDONESIA AND ITS RELATIONSHIP WITH THE INCIDENCE OF EL NINO 1997-1998. MegaScience Bulletin on Meteorology, Climatology, Air Quality, Geophysics and the Environment, 6(August), 129–140.

Musei, S. K., Nyaga, J. M., & Dubow, A. Z. (2021). SPEI-based spatial and temporal evaluation of drought in Somalia. Journal of Arid Environments, 184(March 2020), 104296. https://doi.org/10.1016/j.jaridenv.2020.104296

Narulita, I., Rahayu, R., Kusratmoko, E., &; Muhamad, Rd. (2019). Threat of Meteorological Drought on Tropical Small Islands caused by El-Nino and Positive Indian Ocean Dipole (IOD), case study: Bintan Island Threat of Meteorological Drought on Tropical Small Islands caused by El-Nino and Positive Indian Ocean Dipole (I. Journal of Environment and Geological Hazards, 10(3), 127–138. http://jlbg.geologi.esdm.go.id/index.php/jlbg

Son, R. M., Alfiandy, S., &; Haq, B. E. A. (2020). El Nino Southern Oscillation (Enso), Indian Ocean Dipole (IOD), and Madden Julian Oscillation (Mjo) on monthly rainfall intensity in Indonesia. Ngurah Rai Bulletin, September, 1.

Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., & Stahl, K. (2015). Candidate Distributions for Climatological Drought Indices (SPI and SPEI). International Journal of Climatology, 35(13), 4027–4040. https://doi.org/10.1002/joc.4267

Sutarja, I. N., Norken, I. N., Dibia, I. N., &; Pratama, I. K. (2013). Academic Review of Drought Risk Master Plan. Proceedings of the National Seminar on Disaster Research, 2015–2019.

Svoboda, M., Michael, H., & Wood, D. A. (2012). Standardized Precipitation Index User Guide (WMO-No.1090). In World Meteorological Organization.

an Loon, A. F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S., Wanders, N., Gleeson, T., Van Dijk, A. I. J. M., Tallaksen, L. M., Hannaford, J., Uijlenhoet, R., Teuling, A. J., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., & Van Lanen, H. A. J. (2016). Drought in a human-modified world: Reframing drought definitions, understanding, and analysis approaches. Hydrology and Earth System Sciences, 20(9), 3631–3650. https://doi.org/10.5194/hess-20-3631-2016

Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1

Wong, G., van Lanen, H. A. J., & Torfs, P. J. J. F. (2013). Probabilistic analysis of hydrological drought characteristics using meteorological drought. Hydrological Sciences Journal, 58(2), 253–270. https://doi.org/10.1080/02626667.2012.753147

Xu, C., An, W., Wang, S. Y. S., Yi, L., Ge, J., Nakatsuka, T., Sano, M., & Guo, Z. (2019). Increased drought events in southwest China revealed by tree ring oxygen isotopes and potential role of Indian Ocean Dipole. Science of the Total Environment, 661, 645–653. https://doi.org/10.1016/j.scitotenv.2019.01.186

Downloads

Published

2023-10-30

How to Cite

Manullang, F. P., Tarigan, K., Situmorang, M., Humaidi, S., Doloksaribu, D. E. D., & Darmawan, Y. (2023). Characterization of Meteorological Drought Using Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index Methods in North Sumatera. Prisma Sains : Jurnal Pengkajian Ilmu Dan Pembelajaran Matematika Dan IPA IKIP Mataram, 11(4), 1084–1101. https://doi.org/10.33394/j-ps.v11i4.9961

Issue

Section

Research Articles